130
Views
19
CrossRef citations to date
0
Altmetric
Articles

A Fault-Tolerance Nanoscale Design for Binary-to-Gray Converter based on QCA

& ORCID Icon

References

  • P. E. Allen, and D. R. Holberg. CMOS analog circuit design. New York: Elsevier, 2011.
  • B. Hasani, and N. J. Navimipour, “A new design of a carry-save adder based on quantum-dot cellular automata,” Iran. J. Sci. Tech. Trans. Electr. Eng., Vol. 185, pp. 1–7, 2021.
  • S. Seyedi, M. Darbandi, and N. J. J. O. Navimipour, “Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology,” Optik, Vol. 185, pp. 827–37, 2019. doi:10.1016/j.ijleo.2019.03.029
  • S. S. Ahmadpour, et al., “A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology,” Concurr. Comp: Prac. E., Vol. 32, no. 5, p. e5548, 2020.
  • V. K. Sharma, “Optimal design for digital comparator using QCA nanotechnology with energy estimation,” Int. J. Numer. Model. Electron. Netw. Dev. Fields, Vol. 34, no. 2, p. e2822, 2021.
  • S.-S. Ahmadpour, M. Mosleh, and M.-A. Asadi, “The development of an efficient 2-to-4 decoder in quantum-Dot cellular automata,” Iran. J. Sci. Tech. Trans. Electr. Eng., 2020. doi:10.1007/s40998-020-00375-9
  • C. S. Lent, et al., “Quantum cellular automata,” Nanotechnology, Vol. 4, no. 1, p. 49, 1993. doi:10.1088/0957-4484/4/1/004
  • L. Xingjun, et al., “A new design of QCA-based nanoscale multiplexer and its usage in communications,” Int. J. Commun Syst, Vol. 33, no. 4, p. e4254, 2020. doi:10.1002/dac.4254
  • A. Roohi, R. F. DeMara, and N. Khoshavi, “Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder,” Microelectron. J., Vol. 46, no. 6, pp. 531–42, 2015. doi:10.1016/j.mejo.2015.03.023
  • S. Afrooz, and N. J. J. I. C. Navimipour. Devices, and systems, an effective nano design of demultiplexer architecture based on coplanar quantum-dot cellular automata. 2021.
  • X. Ma, et al., “Reversible gates and testability of one dimensional arrays of molecular QCA,” J. Electron. Test., Vol. 24, no. 1, pp. 297–311, 2008. doi:10.1007/s10836-007-5042-2
  • S. Seyedi, and N. J. Navimipour, “Designing a New 4:2 compressor using an efficient multi-layer full-adder based on nanoscale quantum-Dot cellular automata,” Int. J. Theor. Phys. (2021). doi:10.1007/s10773-021-04734-y
  • N. Kandasamy, et al., “Quantum dot cellular automata-based Scan flip-flop and boundary scan register,” IETE. J. Res., 1–14, 2020. doi:10.1080/03772063.2020.1831411
  • M. B. Tahoori, et al. Defects and faults in quantum cellular automata at nano scale. in VLSI Test Symposium, 2004. Proceedings. 22nd IEEE. 2004. IEEE.
  • G. Singh, B. Raj, and R. K. Sarin, “Fault-tolerant design and analysis of QCA-based circuits,” IET Circuits Devices Syst., Vol. 12, no. 5, pp. 638–44, 2018. doi:10.1049/iet-cds.2017.0505
  • M. Momenzadeh, et al. “Quantum cellular automata: New defects and faults for new devices.” in 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings. 2004. IEEE.
  • S. Islam, M. Abdullah-al-Shafi, and A. N. Bahar. Implementation of binary to gray code converters in quantum dot cellular automata. 2015.
  • M. Abdullah-Al-Shafi, and A. N. Bahar, “Novel binary to gray code converters in QCA with power dissipation analysis,” Int. J. Multimedia Ubiq. Eng., Vol. 11, no. 8, pp. 379–96, 2016. doi:10.14257/ijmue.2016.11.8.38
  • Gassoumi, I., L. Touil, and B. Ouni, “Design of reversible binary-to-gray code converter in quantum-Dot cellular automata,” in Design and testing of reversible logic, A. Singh, M. Fujita, and A. Mohan, Eds. Singapore: Springer, 2020, pp. 251–61.
  • G. Singh, R. K. Sarin, and B. Raj, “Design and analysis of area efficient QCA based reversible logic gates,” Microprocess. Microsyst., Vol. 52, pp. 59–68, 2017. doi:10.1016/j.micpro.2017.05.017
  • R. Chakrabarty, et al. Design of binary to Gray code converter for error correction in communication systems using layered quantum dot cellular automata. in 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). 2018. IEEE.
  • C. Mukherjee, et al., “Towards modular binary to gray converter design using LTEx module of quantum-dot cellular automata,” Microsyst. Technol., Vol. 25, no. 5, pp. 2011–8, 2019. doi:10.1007/s00542-018-4066-0
  • Y.-W. You, and J.-C. Jeon. DESIGN OF EXTENDABLE BINARY TO GRAY CODE CONVERTERUSING QUANTUM-DOT CELLULAR AUTOMATA.
  • K. S. Banu, et al. Modal based analysis of binary adders with fault tolerance using QCA in marine applications. 2017.
  • D. Kumar, and D. Mitra, “Design of a practical fault-tolerant adder in QCA,” Microelectron. J., Vol. 53, pp. 90–104, 2016. doi:10.1016/j.mejo.2016.04.004
  • K. Walus, et al., “QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata,” IEEE Trans. Nanotechnol., Vol. 3, no. 1, pp. 26–31, 2004. doi:10.1109/TNANO.2003.820815
  • K. Walus. ATIPS Laboratory QCADesigner Homepage. ATIPS Laboratory, Univ. Calgary, Calgary, Canada. 2002.
  • R. Sherizadeh, and N. J. Navimipour, “Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving,” Optik-Int. J. Light Electron. Opt., Vol. 158, pp. 477–89, 2018. doi:10.1016/j.ijleo.2017.12.055
  • J. C. Das, and D. De, “Reversible binary to grey and grey to binary code converter using QCA,” IETE. J. Res., Vol. 61, no. 3, pp. 223–9, 2015. doi:10.1080/03772063.2015.1018845
  • M. R. Beigh, and M. Mustafa, “Design and simulation of efficient code converter circuits for quantum-Dot cellular automata,” J. Comput. Theor. Nanosci., Vol. 11, no. 12, pp. 2564–9, 2014. doi:10.1166/jctn.2014.3673
  • N. G. Rao, P. Srikanth, and P. Sharan, “A novel quantum dot cellular automata for 4-bit code converters,” Optik. (Stuttg), Vol. 127, no. 10, pp. 4246–9, 2016. doi:10.1016/j.ijleo.2015.12.119
  • C. Mukherjee, et al., “QCA gray code converter circuits using LTEx methodology,” Int. J. Theor. Phys., Vol. 57, no. 7, pp. 2068–92, 2018. doi:10.1007/s10773-018-3732-4
  • E. T. Karkaj, and S. R. Heikalabad, “Binary to gray and gray to binary converter in quantum-dot cellular automata,” Optik, Vol. 130, pp. 981–9, 2017. doi:10.1016/j.ijleo.2016.11.087
  • N. Guleria. Binary to gray code converter implementation using QCA. in 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA)(Fall). 2017. IEEE.
  • R. E. Ravindran, et al., “Design of reversible and non-reversible binary to gray and gray to binary converter using quantum Dot cellular automata,” Int. J., Vol. 9, no. 3, pp. 981–9, 2020.
  • I. M. Tajul, et al., “A new efficient non-reversible 4 bit binary to gray and 4 bit gray to binary converter in QCA,” Nanosyst. Phys. Chem. Math., Vol. 9, no. 4, pp. 473–83, 2018.
  • W. Liu, et al., “A first step toward cost functions for quantum-dot cellular automata designs,” IEEE Trans. Nanotechnol., Vol. 13, no. 3, pp. 476–87, 2014. doi:10.1109/TNANO.2014.2306754
  • V. Pudi, and K. Sridharan, “Efficient design of a hybrid adder in quantum-dot cellular automata,” IEEE Trans. Very Large Scale Integration (VLSI) Sys., Vol. 19, no. 9, pp. 1535–48, 2010. doi:10.1109/TVLSI.2010.2054120
  • M. Abdullah-Al-Shafi, et al., “Average output polarization dataset for signifying the temperature influence for QCA designed reversible logic circuits,” Data. Brief., Vol. 19, p. 42, 2018. doi:10.1016/j.dib.2018.05.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.