251
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Multi-perforated Energy-Efficient Piezoelectric Energy Harvester Using Improved Stress Distribution

ORCID Icon, & ORCID Icon

References

  • A. Anand, and S. Kundu, “Design of a spiral-shaped piezoelectric energy harvester for powering pacemakers,” Nanomater. Energy, Vol. 8, no. 2, pp. 139–150, Sep. 2019.
  • A. Anand and S. Kundu, “Design of MEMS based piezoelectric energy harvester for pacemaker,” in Devices for Integrated Circuit (DevIC). IEEE, 2019, pp. 465–9.
  • D. Chaudhuri, S. Kundu, and N. Chattoraj, “Harvesting energy with zinc oxide bio-compatible piezoelectric material for powering cochlear implants,” in Innovations in Power and Advanced Computing Technologies, i-PACT, 2017, pp. 1–5.
  • S. Roundy and P. K. Wright, “A piezoelectric vibration based generator for wireless electronics,” Smart Mater. Struct., Vol. 13, no. 5, pp. 1131–42, Aug. 2004.
  • S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Comput. Commun., Vol. 26, no. 11, pp. 1131–44, July 2003.
  • P. D. Mitcheson, P. Miao, B. H. Stark, E. M. Yeatman, A. S. Holmes, and T. C. Green, “MEMS electrostatic micropower generator for low frequency operation,” Sens. Actuators, A, Vol. 115, no. 2–3, pp. 523–9, Sep. 2004.
  • P. Glynne-Jones, M. J. Tudor, S. P. Beeby, and N. M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sens. Actuators A, Vol. 110, no. 1–3, pp. 344–9, Feb. 2004.
  • S. Naval, P. K. Sinha, N. K. Das, A. Anand, and S. Kundu, “Wideband piezoelectric energy harvester design using parallel connection of multiple beams,” Int. J. Nanoparticles, Vol. 12, no. 3, pp. 206–223, 2020.
  • S. Nabavi, and L. Zhang, “Portable wind energy harvesters for low- power applications: a survey,” Sensors, Vol. 16, no. 7, pp. 1101, 2016. https://www.mdpi.com/1424-8220/16/7/1101.
  • S. Nabavi, and L. Zhang, “Design and optimization of Piezoelectric MEMS vibration energy harvesters based on genetic algorithm,” IEEE Sens. J., Vol. 17, no. 22, pp. 7372–82, Nov. 2017. doi:10.1109/JSEN.2017.2756921.
  • G. Gafforelli, R. Ardito, A. Corigliano, C. Valzasina, and F. Procopio. “Numerical simulations of piezoelectric MEMS energy harvesters,” 2014 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Ghent, pp. 1–9, 2014, doi:10.1109/EuroSimE.2014.6813825.
  • T. Galchev, E. E. Aktakka, and K. Najafi, “A piezoelectric parametric frequency increased generator for harvesting Low-Frequency vibrations,” J. Microelectromech. Syst., Vol. 21, no. 6, pp. 1311–20, Dec. 2012. doi:10.1109/JMEMS.2012.2205901.
  • A. Anand, S. Naval, P. K. Sinha, N. K. Das, and S. Kundu, “Effects of coupling in piezoelectric multi-beam structure,” Microsyst. Technol., Vol. 26, no. 4, pp. 1235–52, 2020.
  • M. Z. Ansari and C. Cho, “A study on increasing sensitivity of rectangular microcantilevers used in biosensors” sensors,” Sensors, Vol. 8, no. 11, pp. 7530–44, 2008.
  • A. Husain. “MEMS-based photonic switching in communications networks,” OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171), Anaheim, CA, pp. WX1–WX1, 2001, doi: 10.1109/OFC.2001.928420.
  • H. Liu, C. J. Tay, C. Quan, T. Kobayashi, and C. Lee, “Piezoelectric MEMS energy harvester for Low-Frequency vibrations With wideband operation range and steadily increased output power,” J. Microelectromechanical Syst., Vol. 20, no. 5, pp. 1131–42, Oct. 2011. doi:10.1109/JMEMS.2011.2162488.
  • S. Priya, and D. J. Inman, Energy Harvesting Technologies. Springer, Vol. 21, 2009. doi:10.1007/978-0-387-76464-1.
  • J. Cao, M. Ling, D. J. Inman, and J Lin, “Generalized constitutive equations for piezo-actuated compliant mechanism,” Smart Mater. Struct., Vol. 25, no. 9, pp. 095005, Aug. 2016.
  • S. S. Rao, Vibration of Continuous Systems. Wiley, Vol. 464, 2007. doi:10.1002/9780470117866.
  • P. M. Kumar, A. Ashok, P. Pal, and A. K. Pandey, “Frequency tuning of weakly and strongly coupled micromechanical beams,” ISSS Journal of Micro and Smart Systems, Vol. 9, no. 2, pp. 17–130, 2020.
  • A. Akarapu, R. P. Nighot, L. Devsoth, M. Yadav, P. Pal, and A. K. Pandey, “Experimental and theoretical analysis of drag forces in micromechanical-beam arrays,” Phys. Rev. Appl., Vol. 13, no. 3, p. 034003, Mar. 2020.
  • S. S. Singh, D. K. Nair, A. Rajagopal, P. Pal, and A. K. Pandey, “Dynamic analysis of microbeams based on modified strain gradient theory using differential quadrature method,” European Journal of Computational Mechanics, Vol. 27, no. 3, pp. 187–203, 2018.
  • P. Li, Y. Liu, Y. Wang, C. Luo, G. Li, J. Hu, W. Liu, and W. Zhang, “Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure,” AIP. Adv., Vol. 5, no. 4, p. 047151, 2015. doi:10.1063/1.4919711.
  • A. R. Reddy, M. Umapathy, D. Ezhilarasi, and G. Uma, “Cantilever beam with trapezoidal cavity for improved energy harvesting,” Int. J. Prec. Eng. Manuf., Vol. 16, no. 8, pp. 1875–81, 2015.
  • S. Naval, P. K. Sinha, N. K. Das, A. Anand, and S. B. Kundu, “Bandwidth increment of piezoelectric energy harvester using multi-beam structure,” in Devices for Integrated Circuit (DevIC). IEEE, 2019, pp. 370–373.
  • Y. Jia, D. Sijun, and A. A. Seshia, “Cantilevers-on-membrane design for broadband MEMS piezoelectric vibration energy harvesting,” J. Phys: Conf. Ser., Vol. 660, no. 1, p. 012030, 2015. IOP Publishing.
  • I. Kanno, T. Ichida, K. Adachi, H. Kotera, K. Shibata, and T. Mishima, “Power-generation performance of lead-free (K, Na) NbO3 piezoelectric thin-film energy harvesters,” Sens. Actuators, A, Vol. 179, pp. 132–136, 2012.
  • P. Muralt, M. Marzencki, B. Belgacem, F. Calame, and S. Basrour, “Vibration energy harvesting with PZT micro device,” Procedia. Chem., Vol. 1, no. 1, pp. 1191–1194, 2009.
  • L. Beker, Ö. Zorlu, N. Göksu, and H. Külah, “Stimulating auditory nerve with MEMS harvesters for fully implantable and self-powered cochlear implants,” Transducers Eurosensors, Vol. XXVII, pp. 1663–66, IEEE, 2013.
  • H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and C. Quan, “A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz,” Microsyst. Technol., Vol. 18, no. 4, pp. 497–506, 2012.
  • H. Liu, C. Quan, C. J. Tay, T. Kobayashi, and C. Lee, “A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations,” Phys. Procedia, Vol. 19, pp. 129–133, 2011.
  • A. Ashok, A. Gangele, P. Pal, and A. K. Pandey, “An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices,” J. Micromech. Microeng., Vol. 28, no. 7, p. 075009, 2018.
  • A. Ashok, P. Manoj Kumar, S. S. Singh, P. Raju, P. Pal, and A. K. Pandey, “Achieving wideband micromechanical system using coupled non-uniform beams array,” Sens. Actuators A, Vol. 273, pp. 12–18, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.