762
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Determination of Effective Signal Processing Stages for Brain Computer Interface on BCI Competition IV Data Set 2b: A Review Study

ORCID Icon & ORCID Icon

References

  • M. Tangermann, K.-R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K. J. Miller, and G. Mueller-Putz, “Review of the BCI competition IV,” Front. Neurosci, Vol. 6, pp. 55, 2012.
  • R. Leeb, C. Brunner, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller, “BCI Competition 2008–Graz data set B.,” Graz Univ. Technol. Austria, 1–6, 2008.
  • P. K. Pattnaik, and J. Sarraf, “Brain computer interface issues on hand movement,” J. King Saud Univ. Inf. Sci, Vol. 30, no. 1, pp. 18–24, 2018.
  • D. J. McFarland, and J. R. Wolpaw, “EEG-based brain–computer interfaces,” Curr. Opin. Biomed. Eng, Vol. 4, pp. 194–200, 2017.
  • J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, and A. Kübler, “An MEG-based brain–computer interface (BCI),” Neuroimage, Vol. 36, no. 3, pp. 581–593, 2007.
  • L. F. Nicolas-Alonso, and J. Gomez-Gil, “Brain computer interfaces, a review,” Sensors, Vol. 12, no. 2, pp. 1211–1279, 2012.
  • J. R. Wolpaw, N. Birbaumer, D. J. McFarland,G. Pfurtscheller, and T. M. Vaughan, “Brain–computer interfaces for communication and control,” Clin. Neurophysiol, Vol. 113, no. 6, pp. 767–791, 2002.
  • A. M. Álvarez-Meza, L. F. Velásquez-Martínez, and G. Castellanos-Dominguez, “Time-series discrimination using feature relevance analysis in motor imagery classification,” Neurocomputing, Vol. 151, pp. 122–129, 2015.
  • N. S. Malan, and S. Sharma, “Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals,” Comput. Biol. Med, Vol. 107, pp. 118–126, 2019.
  • G. Pfurtscheller, C. Brunner, A. Schlögl, and F. H. L. Da Silva, “Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks,” Neuroimage, Vol. 31, no. 1, pp. 153–159, 2006.
  • G. Dai, J. Zhou, J. Huang, and N. Wang, “HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification,” J. Neural Eng., Vol. 17, no. 1, p. 16025, 2020. DOI: 10.1088/1741-2552/ab405f
  • S. Aggarwal, and N. Chugh, “Signal processing techniques for motor imagery brain computer interface: A review,” Array, Vol. 1, p. 100003, 2019. DOI: 10.1016/j.array.2019.100003
  • V. Viswam, J. Dragas, A. Shadmani, Y. Chen, A. Stettler,J. Müller, and A. Hierlemann, “22.8 Multi-functional microelectrode array system featuring 59,760 electrodes, 2048 electrophysiology channels, impedance and neurotransmitter measurement units,” in Solid-State Circuits Conference (ISSCC), 2016 IEEE International, IEEE, 2016, pp. 394–396.
  • M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz, “Cortical control of a prosthetic arm for self-feeding,” Nature, Vol. 453, no. 7198, pp. 1098–1101, 2008. DOI: 10.1038/nature06996
  • G. Buzsáki, “Large-scale recording of neuronal ensembles,” Nat. Neurosci., Vol. 7, no. 5, pp. 446–451, 2004. DOI: 10.1038/nn1233
  • A. Khosla, P. Khandnor, and T. Chand, “A comparative analysis of signal processing and classification methods for different applications based on EEG signals,” Biocybern. Biomed. Eng, Vol. 40, pp. 649–690, 2020. DOI: 10.1016/j.bbe.2020.02.002.
  • A. Al-Saegh, S. A. Dawwd, and J. M. Abdul-Jabbar, “Deep learning for motor imagery EEG-based classification: A review,” Biomed. Signal Process. Control, Vol. 63, p. 102172, 2021. DOI: 10.1016/j.bspc.2020.102172.
  • M. K. Islam, A. Rastegarnia, and Z. Yang, “Methods for artifact detection and removal from scalp EEG: A review,” Neurophysiol. Clin. Neurophysiol., Vol. 46, no. 4–5, pp. 287–305, 2016.
  • E. Lashgari, D. Liang, and U. Maoz, “Data augmentation for deep-learning-based electroencephalography,” J. Neurosci. Methods, Vol. 346, p. 108885, 2020. DOI: 10.1016/j.jneumeth.2020.108885.
  • S. K. Mudgal, S. S. K. Sharma, I. Chaturvedi, and A. Sharma, “Brain computer interface advancement in neurosciences: applications and issues,” Interdiscip. Neurosurg, Vol. 20, p. 100694, 2020. DOI: 10.1016/j.inat.2020.100694.
  • N. Tiwari, D. R. Edla, S. Dodia, and A. Bablani, “Brain computer interface: A comprehensive survey,” Biol. Inspired Cogn. Archit, Vol. 26, pp. 118–129, 2018.
  • M. Fatourechi, A. Bashashati, R. K. Ward, and G. E. Birch, “EMG and EOG artifacts in brain computer interface systems: A survey,” Clin. Neurophysiol, Vol. 118, no. 3, pp. 480–494, 2007.
  • S. Soman, “High performance EEG signal classification using classifiability and the twin SVM,” Appl. Soft Comput, Vol. 30, pp. 305–318, 2015.
  • E. Weber, and M. Doppelmayr, “Kinesthetic motor imagery training modulates frontal midline theta during imagination of a dart throw,” Int. J. Psychophysiol, Vol. 110, pp. 137–145, 2016.
  • Y.-H. Liu, L.-F. Lin, C.-W. Chou, Y. Chang, Y.-T. Hsiao, and W.-C. Hsu, “Analysis of electroencephalography event-related desynchronisation and synchronisation induced by lower-limb stepping motor imagery,” J. Med. Biol. Eng, Vol. 39, no. 1, pp. 54–69, 2019.
  • J. Wang, Z. Feng, N. Lu, and J. Luo, “Toward optimal feature and time segment selection by divergence method for EEG signals classification,” Comput. Biol. Med, Vol. 97, pp. 161–170, 2018.
  • Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, “Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface,” J. Neurosci. Methods, Vol. 255, pp. 85–91, 2015.
  • X. Zhu, P. Li, C. Li, D. Yao, R. Zhang, and P. Xu, “Separated channel convolutional neural network to realize the training free motor imagery BCI systems,” Biomed. Signal Process. Control, Vol. 49, pp. 396–403, 2019.
  • H. Raza, D. Rathee, S.-M. Zhou, H. Cecotti, and G. Prasad, “Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface,” Neurocomputing, Vol. 343, pp. 154–166, 2019.
  • H. Raza, H. Cecotti, Y. Li, and G. Prasad, “Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface,” Soft. comput., Vol. 20, no. 8, pp. 3085–3096, 2016.
  • Y. Zhang, Y. Wang, J. Jin, and X. Wang, “Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification,”Int. J. Neural Syst, Vol. 27, no. 2, pp. 1650032, 2017.
  • D. Li, H. Zhang, M. S. Khan, and F. Mi, “A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition,” Biomed. Signal Process. Control, Vol. 41, pp. 222–232, 2018.
  • J. F. D. Saa, and M. Çetin, “A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data,” J. Neural Eng., Vol. 9, no. 2, pp. 26020, 2012.
  • F. K. Onay, and C. Köse, “Assessment of CSP-based two-stage channel selection approach and local transformation-based feature extraction for classification of motorimagery/movement EEG data,” Biomed. Eng. Tech, Vol. 64, no. 6, pp. 643–653, 2019.
  • X. Song, and S.-C. Yoon, “Improving brain–computer interface classification using adaptive common spatial patterns,” Comput. Biol. Med, Vol. 61, pp. 150–160, 2015.
  • M. J. Monesi, and S. H. Sardouie, “Extended Common Spatial and Temporal Pattern (ECSTP): a semi-blind approach to extract features in ERP detection,” Pattern Recognit., Vol. 95, pp. 128–135, 2019.
  • B. Yahya-Zoubir, M. Bentlemsan, E.-T. Zemouri, and K. Ferroudji, “Adaptive time window for EEG-based motor imagery classification,” in Proceedings of the International Conference on Intelligent Information Processing, Security and Advanced Communication. pp. 83. ACM (2015).
  • K. Ferroudji, B. Yahya-Zoubir, M. Bentlemsan, and E.-T. Zemouri, “Features selection using differential Evolution in motor-imagery based brain machine interface,” in Proceedings of the International Conference on Intelligent Information Processing, Security and Advanced Communication. pp. 84. ACM (2015).
  • K.K. Ang, Z.Y. Chin, C. Wang, C. Guan, and H. Zhang: “Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b.” Front. Neurosci. Vol. 6, pp. 39, 2012.
  • J. Luo, J. Wang, R. Xu, and K. Xu, “Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification,” J. Neurosci. Methods, Vol. 323, pp. 98–107, 2019.
  • J. Luo, X. Gao, X. Zhu, B. Wang, N. Lu, and J. Wang, “Motor imagery EEG classification based on ensemble support vector learning,” Comput. Methods Programs Biomed, Vol. 193, p. 105464, 2020. DOI: 10.1016/j.cmpb.2020.105464.
  • J. Wang, Z. Feng, X. Ren, N. Lu, J. Luo, and L. Sun, “Feature subset and time segment selection for the classification of EEG data based motor imagery,” Biomed. Signal Process. Control, Vol. 61, p. 102026, 2020. DOI: 10.1016/j.bspc.2020.102026.
  • J. Luo, Z. Feng, J. Zhang, and N. Lu, “Dynamic frequency feature selection based approach for classification of motor imageries,” Comput. Biol. Med, Vol. 75, pp. 45–53, 2016.
  • J. Luo, Z. Feng, and N. Lu, “Spatio-temporal discrepancy feature for classification of motor imageries,” Biomed. Signal Process. Control, Vol. 47, pp. 137–144, 2019.
  • M. Li, W. Zhu, H. Liu, and J. Yang, “Adaptive feature extraction of motor imagery EEG with optimal wavelet packets and SE-isomap,” Appl. Sci, Vol. 7, no. 4, pp. 390, 2017.
  • N. Lu, T. Li, X. Ren, and H. Miao, “A deep learning scheme for motor imagery classification based on restricted boltzmann machines,” IEEE Trans. Neural Syst. Rehabil. Eng, Vol. 25, no. 6, pp. 566–576, 2016.
  • S.-H. Oh, Y.-R. Lee, and H.-N. Kim, “A novel EEG feature extraction method using Hjorth parameter,” Int. J. Electron. Electr. Eng, Vol. 2, no. 2, pp. 106–110, 2014.
  • G. Rodríguez-Bermúdez, and P. J. García-Laencina, “Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces,” J. Med. Syst, Vol. 36, no. 1, pp. 51–63, 2012.
  • L. Sun, Z. Feng, B. Chen, and N. Lu, “A contralateral channel guided model for EEG based motor imagery classification,” Biomed. Signal Process. Control, Vol. 41, pp. 1–9, 2018.
  • C. Xu, C. Sun, G. Jiang, X. Chen, Q. He, and P. Xie, “Two-level multi-domain feature extraction on sparse representation for motor imagery classification,” Biomed. Signal Process. Control, Vol. 62, p. 102160, 2020. DOI: 10.1016/j.bspc.2020.102160.
  • C. Kim, J. Sun, D. Liu, Q. Wang, and S. Paek, “An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI,” Med. Biol. Eng. Comput, Vol. 56, no. 9, pp. 1645–1658, 2018.
  • G. Xu, X. Shen, S. Chen, Y. Zong, C. Zhang, H. Yue, M. Liu, F. Chen, and W. Che, “A Deep Transfer convolutional Neural network framework for EEG signal classification,” IEEE. Access., Vol. 7, pp. 112767–112776, 2019.
  • K. Sayed, M. Kamel, M. Alhaddad, H. M. Malibary, and Y. M. Kadah, “Characterization of phase space trajectories for brain-computer interface,” Biomed. Signal Process. Control, Vol. 38, pp. 55–66, 2017.
  • R. Bose, K. Samanta, S. Chatterjee, S. Bhattacharyya, and A. Khasnobish, “Motor imagery classification enhancement with concurrent implementation of spatial filtration and modified stockwell transform,” Bioelectronics and Medical Devices, Vol. 1, pp. 793–817, 2019. DOI: 10.1016/B978-0-08-102420-1.00038-8
  • S. Shahid, and G. Prasad, “Bispectrum-based feature extraction technique for devising a practical brain–computer interface,” J. Neural Eng, Vol. 8, no. 2, pp. 25014, 2011.
  • X. Tang, W. Li, X. Li, W. Ma, and X. Dang, “Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network,” Expert Syst. Appl, Vol. 149, p. 113285, 2020. DOI: 10.1016/j.eswa.2020.113285.
  • N. Bagh, and M. R. Reddy, “Hilbert transform-based event-related patterns for motor imagery brain computer interface,” Biomed. Signal Process. Control, Vol. 62, p.102020, 2020. DOI: 10.1016/j.bspc.2020.102020.
  • D. Whitley, “A genetic algorithm tutorial,” Stat. Comput, Vol. 4, no. 2, pp. 65–85, 1994.
  • X. Yu, P. Chum, and K.-B. Sim, “Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system,” Optik (Stuttg), Vol. 125, no. 3, pp. 1498–1502, 2014.
  • I. Kononenko, “Estimating attributes: analysis and extensions of RELIEF,” European Conference on Machine Learning, Vol. 784, pp. 171–182, 1994. DOI: 10.1007/3-540-57868-4_57.
  • G. Dornhege, J. d. R. Millán, T. Hinterberger, D. McFarland, and K.-R. Müller. Toward brain-computer interfacing. Cambridge, MA: MIT press, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.