244
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Design and Testing of Graphene-Based Screen Printed Antenna on Flexible Substrates for Wireless Energy Harvesting Applications

, &

References

  • Z. Bao, and X. Chen, “Flexible and stretchable devices,” Adv. Mater., Vol. 28, no. 22, pp. 4177–9, 2016. doi:10.1002/adma.201601422
  • W. Gao, H. Ota, D. Kiriya, K. Takei, and A. Javey, “Flexible electronics toward wearable sensing,” Acc. Chem. Res., Vol. 52, no. 3, pp. 523–533, 2019. doi:10.1021/acs.accounts.8b00500
  • M. Stoppa, and A. Chiolerio, “Wearable electronics and smart textiles: a critical review,” Sensors, Vol. 14, no. 7, pp. 11957–92, 2014. doi:10.3390/s140711957
  • X. Huang, T. Leng, M. Zhu, X. Zhang, J. Chen, K. Chang, M. Aqeeli, A. K. Geim, K. S. Novoselov, and Z. Hu, “Highly flexible and conductive printed graphene for wireless wearable communications applications,” Sci. Rep., Vol. 5, pp. 18298, 2015. doi:10.1038/srep18298
  • X. Huang, T. Leng, X. Zhang, J. Chen, K. Chang, A. K. Geim, K. S. Novoselov, and Z. Hu, “Binder-free highly conductive graphene laminate for low cost printed radio frequency applications,” Appl. Phys. Lett., Vol. 106, no. 20, pp. 203105, 2015. doi:10.1063/1.4919935
  • P. A. Catherwood, S. S. Bukhari, G. Watt, W. G. Whittow, and J. McLaughlin, “Body-centric wireless hospital patient monitoring networks using body-contoured flexible antennas,” IET Microw. Antennas Propag., Vol. 12, no. 2, pp. 203–210, 2015. doi:10.1049/iet-map.2017.0604
  • M. A. Andersson, A. Özçelikkale, M. Johansson, U. Engström, A. Vorobiev, and J. Stake, “Feasibility of ambient RF energy harvesting for self-sustainable M2M communications using transparent and flexible graphene antennas,” IEEE Access., Vol. 4, pp. 5850–7, 2016. doi:10.1109/ACCESS.2016.2604078
  • M. P. Aparicio, A. Bakkali, J. Pelegri-Sebastia, T. Sogorb, and V. L. Bou, “Radio frequency energy harvesting-sources and techniques,” Renew. Energy Util. Syst. Integr., 2016.
  • S. Selvan, M. Zaman, R. Gobbi, and H. Y. Wong, “Recent advances in the design and development of radio frequency-based energy harvester for powering wireless sensors: a review,” J. Electromagn. Waves Appl., Vol. 32, no. 16, pp. 2110–34, 2018. doi:10.1080/09205071.2018.1497548
  • S. Ghosh, and A. Chakrabarty, “Dual band circularly polarized monopole antenna design for RF energy harvesting,” IETE J. Res., Vol. 62, no. 1, pp. 9–16, 2016. doi:10.1080/03772063.2015.1076359
  • S. Agrawal, M. S. Parihar, and P. N. Kondekar, “Broadband rectenna for radio frequency energy harvesting application,” IETE J. Res., Vol. 64, no. 3, pp. 347–53, 2018. doi:10.1080/03772063.2017.1356755
  • 12. D. Surender, T. Khan, and F. A. Talukdar, “A pentagon-shaped microstrip patch antenna with slotted ground plane for RF energy harvesting,” in 2020 URSI Regional Conference on Radio Science (URSI-RCRS), IEEE, Feb., 2020, pp. 1–4.
  • 13. D. Surender, T. Khan, and F. A. Talukdar, “A hexagonal-shaped microstrip patch antenna with notch included partial ground plane for 2.45 GHz Wi-Fi band RF energy harvesting applications,” in 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), IEEE, Feb., 2020, pp. 966–9.
  • D. Kumar, and K. Chaudhary, “Design of an improved differentially fed antenna array for RF energy harvesting,” IETE. J. Res., Vol. 66, no. 3, pp. 353–8, 2020. doi:10.1080/03772063.2018.1488628
  • M. Prauzek, J. Konecny, M. Borova, K. Janosova, J. Hlavica, and P. Musilek, “Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review,” Sensors, Vol. 18, no. 8, pp. 2446, 2018. doi:10.3390/s18082446
  • J. Perruisseau-Carrier, “Graphene for antenna applications: opportunities and challenges from microwaves to THz,” in 2012 Loughborough Antennas & Propagation Conference (LAPC), IEEE, 2012, pp. 1–4.
  • K. S. Novoselov, and A. K. Geim, “The rise of graphene,” Nat. Mater, Vol. 6, no. 3, pp. 183–91, 2007. doi:10.1038/nmat1849
  • M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B, Vol. 80, no. 24, pp. 245435, 2009. doi:10.1103/PhysRevB.80.245435
  • A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., Vol. 81, no. 1, pp. 109, 2009. doi:10.1103/RevModPhys.81.109
  • C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, Vol. 321, no. 5887, pp. 385–8, 2008. doi:10.1126/science.1157996
  • J. M. Jornet, and I. F. Akyildiz, “Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band,” in Proceedings of the Fourth European Conference on Antennas and Propagation, IEEE, 2010, pp. 1–5.
  • 22. I. L. Martí, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Scattering of terahertz radiation on a graphene-based nano-antenna,” in AIP Conference Proceedings, vol. 1398, no. 1, American Institute of Physics, 2011, pp. 144–6.
  • E. Carrasco, and J. Perruisseau-Carrier, “Reflectarray antenna at terahertz using graphene,” IEEE Antennas Wireless Propag. Lett., Vol. 12, pp. 253–6, 2013. doi:10.1109/LAWP.2013.2247557
  • E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett., Vol. 102, no. 10, pp. 104103, 2013. doi:10.1063/1.4795787
  • E. Carrasco, M. Tamagnone, J. R. Mosig, T. Low, and J. Perruisseau-Carrier, “Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array,” Nanotechnology, Vol. 26, no. 13, pp. 134002, 2015. doi:10.1088/0957-4484/26/13/134002
  • H. A. Elmobarak, S. K. Rahim, M. Abedian, P. J. Soh, G. A. Vandenbosch, and L. Y. Chiong, “Assessment of multilayered graphene technology for flexible antennas at microwave frequencies,” Microw. Opt. Technol. Lett., Vol. 59, no. 10, pp. 2604–10, 2017. doi:10.1002/mop.30783
  • I. Llatser, C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, “Graphene-based nano-patch antenna for terahertz radiation,” Photon. Nanostruct. Fundamentals Appl., Vol. 10, no. 4, pp. 353–8, 2012.
  • D. Correas-Serrano, J. S. Gomez-Diaz, A. Alù, and A. ÁlvarezMelcón, “Electrically and magnetically biased graphene-based cylindrical waveguides: analysis and applications as reconfigurable antennas,” IEEE Trans. Terahertz Sci. Technol., Vol. 5, no. 6, pp. 951–60, 2015. doi:10.1109/TTHZ.2015.2472985
  • G. Diaz, J. Sebastian, and J. Perruisseau-Carrier, “Microwave to THz properties of graphene and potential antenna applications,” in 2012 International Symposium on Antennas and Propagation (ISAP), IEEE, 2012, pp. 239–42.
  • A. Vakil, and H. Bajwa, “Energy harvesting using graphene based antenna for UV spectrum,” in IEEE Long Island Systems, Applications and Technology (LISAT) Conference 2014, IEEE, 2014, pp. 1–4.
  • D. Tang, Q. Wang, Z. Wang, Q. Liu, B. Zhang, D. He, Z. Wu, and S. Mu, “Highly sensitive wearable sensor based on a flexible multi-layer graphene film antenna,” Sci. Bullet., Vol. 63, no. 9, pp. 574–9, 2018. doi:10.1016/j.scib.2018.03.014
  • Monne, M. Akter, X. Lan, and M. Y. Chen, “Material selection and fabrication processes for flexible conformal antennas,” Int. J. Antennas. Propag., Vol. 2018, Article ID 9815631, p. 14, 2018. doi:10.1155/2018/9815631.
  • W. G. Whittow, A. Chauraya, J. C. Vardaxoglou, Y. Li, R. Torah, K. Yang, S. Beeby, and J. Tudor, “Inkjet-printed microstrip patch antennas realized on textile for wearable applications,” IEEE Antennas Wirel. Propag. Lett., Vol. 13, pp. 71–74, 2014. doi:10.1109/LAWP.2013.2295942
  • COMSOL, AB. Comsolmultiphysics® v. 5.4 www.comsol.com. Stockholm, Sweden.” COMSOL AB, 2018.
  • H. Nawaz, and I. Tekin, “Dual port disc monopole antenna for wide-band MIMO-based wireless applications,” Microw. Opt. Technol. Lett., Vol. 59, no. 11, pp. 2942–9, 2017. doi:10.1002/mop.30843
  • C. A. Balanis. Antenna theory: analysis and design. New Jersey: John wiley& sons, 2016.
  • 37. W. L. Stutzman, and A. Gary. Thiele. Antenna theory and design. New Jersey: John Wiley & Sons, 2012.
  • D. Correas-Serrano, and J. Sebastian Gomez-Diaz, “Graphene-based antennas for terahertz systems: A review,” arXiv preprint arXiv:1704.00371, 2017.
  • O. M. Sanusi, F. A. Ghaffar, A. Shamim, M. Vaseem, Y. Wang, and L. Roy, “Development of a 2.45 GHz antenna for flexible compact radiation dosimeter tags,” IEEE Trans. Antennas Propag., Vol. 67, no. 8, pp. 5063–72, 2019. doi:10.1109/TAP.2019.2911647
  • M. Mrnka, P. Vasina, M. Kufa, V. Hebelka, and Z. Raida, “The RF energy harvesting antennas operating in commercially deployed frequency bands: a comparative study,” Int. J. Antennas. Propag. Vol. 2016, Article ID 7379624, p. 11, 2016. doi:10.1155/2016/7379624.
  • A. Bakkali, J. Pelegrí-Sebastiá, V. Tomas Sogorb, and A. Bou-Escriva, “A dual-band antenna for RF energy harvesting systems in wireless sensor networks,” J. Sensors Vol. 2016, Article ID 5725836, p. 8, 2016. doi:10.1155/2016/5725836.
  • L. C. Ong, and M. F. Karim, “Overview of antennas for RF energy harvesting,” in 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), IEEE, 2014, pp. 209–12.
  • M. Dragoman, and M. Aldrigo, “Graphene rectenna for efficient energy harvesting at terahertz frequencies,” Appl. Phys. Lett., Vol. 109, no. 11, pp. 113105, 2016. doi:10.1063/1.4962642
  • M. Aldrigo, and M. Dragoman, “Graphene-based nano-rectenna in the far infrared frequency band,” in 2014 44th European Microwave Conference, IEEE, 2014, pp. 1202–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.