129
Views
3
CrossRef citations to date
0
Altmetric
Medical Electronics

Deep Brain Stimulation Coding in Parkinson’s: An Evolving Approach

, &

References

  • T. Wichmann, and M. R. DeLong. Deep brain stimulation for movement disorders of basal ganglia origin: Restoring function or functionality?
  • A. L. Benabid, S. Chabardes, J. Mitrofanis, and P. Pollak, “Deep brain stimulus of the subthalamic nucleus for the treatment of Parkinson’s disease,” Lancet Neurol., Vol. 8, pp. 67–81, 2009.
  • A. W. Shukla, P. Zeilma, H. Fernandez, J. A. Bajwa, and R. Mehanna, “DBS programming: An evolving approach for patients with Parkinson’s disease,” Hindawi Parkinson’s Disease, Vol. 2017, pp. 1–11, 2017.
  • V. Rama Raju, R. K. Mridula, and R. Borgohain, “Effect of microelectrode recording in accurate targeting STN with high frequency DBS in Parkinson disease,” Taylor Francis IETE J. Res., Vol. 65, no. 3, pp. 1–14, 2019.
  • P. H. Tu1, Z. Liu1, C. C. Chen, W. Y. Lin, A. L. Bowes, C. S. Lu, and S. T. Lee, “Indirect targeting of subthalamic deep brain stimulus guided by stereotactic computed tomography and microelectrode recordings in patients With Parkinson’s disease,” Front. Hum. Neurosci., Vol. 12, no. 470, pp. 1–12, Dec 2018.
  • A. W. Shukla, and M. S. Okun, “State of the art for deep brain stimulus therapy in movement disorders: A clinical and technological perspective,” IEEE Rev. Biomed. Eng., Vol. 9, pp. 219–233, 2016.
  • M. Picillo, A. M. Lozano, N. Kou, R. Puppi Munhoz, and A. Fasano, “Programming deep brain stimulus for Parkinson’s disease: The Toronto Western Hospital algorithms,” Brain Stim., Vol. 9, no. 3, pp. 425–437, 2016.
  • A. W. Shukla, and M. S. Okun, “Surgical treatment of Parkinson’s disease: patients, targets, devices, and approaches,” Neurotherapeutics, Vol. 11, no. 1, pp. 47–59, 2014.
  • A. M. Kuncel, and W. M. Grill, “Selection of stimulus parameters for deep brain stimulus,” Clin. Neurophysiol., Vol. 115, no. 11, pp. 2431–2441, 2004.
  • M. S. Okun, M. Tagliati, M. Pourfar, H. H. Fernandez, R. L. Rodriguez, R. L. Alterman, and K. D. Foote, “Management of referred deep brain stimulus failures: A retrospective analysis from 2 Movement Disorders Centers,” Arch. Neurol., Vol. 62, no. 8, pp. 1250–1255, 2005.
  • G. Kleiner-Fisman, D. N. Fisman, E. Sime, J. A. Saint-Cyr, A. M. Lozano, and A. E. Lang, “Long-term follow up of bilateral deep brain stimulus of the subthalamic nucleus in patients with advanced Parkinson disease,” J. Neurosurg., Vol. 99, no. 3, pp. 489–495, 2003.
  • G. Geissinger, and J. H. Neal, “Spontaneous twiddler’s syndrome in a patient with a deep brain stimulator,” Surg. Neurol., Vol. 68, no. 4, pp. 454–456, 2007.
  • A. P. Burdick, M. S. Okun, I. U. Haq, H. E. Ward, F. Bova, C. E. Jacobson, D. Bowers, P. Zeilman, and K. D. Foote, “Prevalence of twiddler’s syndrome as a cause of deep brain stimulus hardware failure,” Stereotact. Funct. Neurosurg., Vol. 88, no. 6, pp. 353–359, 2010.
  • A. M. Kuncel, S. E. Cooper, B. R. Wolgamuth, and W. M. Grill, “Amplitude- and frequency-dependent changes in neu-ronal regularity parallel changes in tremor with thalamic deep brain stimulus,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 15, no. 2, pp. 190–197, 2007.
  • S. F. Lempka, S. Miocinovic, M. D. Johnson, J. L. Vitek, and C. C. McIntyre, “In vivo impedance spectroscopy of deep brain stimulus electrodes,” J. Neural Eng., Vol. 6, no. 4, 046001, 2009.
  • M. R. A. De. Benedictis, G. Messina, and R. Cordella, “Comparative analysis of explanted DBS electrodes,” Acta Neurochir., Vol. 257, pp. 2135–2141, 2015.
  • A. H. Faraji, and R. Mark Richardson, “Deep brain stimulation in early Parkinson disease may slow rest tremor progression, science times,” Neurosurgery, Vol. 84, no. 1, pp. E13–E14, Jan. 2019.
  • M. S. Okun, et al., “Subthalamic deep brain stimulus with a constant-current device in Parkinson’s disease: An open-label randomized controlled trial,” Lancet Neurol., Vol. 11, no. 2, pp. 140–149, 2012.
  • D. B. Cohen, M. Y. Oh, S. M. Baser, C. Angle, A. Whiting, C. Birk, and D. M. Whiting, “Fast-track programming and rehabilitation model: A novel approach to postoperative deep brain stimulus patient care,” Arch. Phys. Med. Rehabil., Vol. 88, no. 10, pp. 1320–1324, 2007.
  • K. Samura, Y. Miyagi, T. Okamoto, T. Hayami, J. Kishimoto, M. Katano, and K. Kamikaseda, “Short circuit in deep brain stimulus,” J. Neurosurg., Vol. 117, no. 5, pp. 955–961, 2012.
  • I. Medtronic. N’Vision clinician programmer with software. Activa PC, Activa RC and Activa SC neurostimulus systems for deep brain stimulus, 2008.
  • P. Blomstedt, and M. I. Hariz, “Hardware-related complications of deep brain stimulus: A ten year experience,” Acta Neurochirurgica, Vol. 147, no. 10, pp. 1061–1064, 2005.
  • J. Volkmann, J. Herzog, F. Kopper, and G. Geuschl, “Introduction to the programming of deep brain stimulators,” Mov. Disord., Vol. 17, no. 3, pp. S181–S187, 2002.
  • A. Wagle Shukla, A. Bona, and R. Walz. Troubleshooting. New York: Nova Science Publishers, 2015.
  • M. A. Montuno, A. B. Kohner, K. D. Foote, and M. S. Okun, “An algorithm for management of deep brain stimulus battery replacements: Devising a web-based battery estimator and clinical symptom approach,” Neuromodulation, Vol. 16, no. 2, pp. 147–153, 2013.
  • J. Volkmann, N. Allert, J. Voges, V. Sturm, A. Schnitzler, and H.-J. Freund, “Long-term results of bilateral pallidal stimulus in Parkinson’s disease,” Ann. Neurol., Vol. 55, no. 6, pp. 871–875, 2004.
  • L. Timmermann, et al., “Multiple-source current steering in subthalamic nucleus deep brain stimula-tion for Parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study,” Lancet Neurol., Vol. 14, no. 7, pp. 693–701, 2015.
  • A. Fasano, and A. M. Lozano, “Deep brain stimulus for movement disorders: 2015 and beyond,” Curr. Opin. Neurol., Vol. 28, no. 4, pp. 423–436, 2015.
  • S. Miocinovic, P. Khemani, R. Whiddon, P. Zeilman, D. Martinez-Ramirez, M. S. Okun, and S. Chitnis, “Outcomes, management, and potential mechanisms of interleaving deep brain stimulus settings,” Parkinsonism Related Disord., Vol. 20, no. 12, pp. 1434–1437, 2014.
  • L. Wojtecki, J. Vesper, and A. Schnitzler, “Interleaving pro-gramming of subthalamic deep brain stimulus to reduce side effects with good motor outcome in a patient with Parkinson’s disease,” Parkinsonism Related Disord., Vol. 17, no. 4, pp. 293–294, 2011.
  • E. Moro, R. J. A. Esselink, J. Xie, M. Hommel, A. L. Benabid, and P. Pollak, “The impact on Parkinson’s disease of electrical parameter settings in STN stimulus,” Neurology, Vol. 59, no. 5, pp. 706–713, 2002.
  • R. Kumar, “Methods for programming and patient management with deep brain stimulus of the globus pallidus for the treat-ment of advanced Parkinson’s disease and dystonia,” Mov. Disord., Vol. 17, no. 3, pp. S198–S207, 2002.
  • K. Fakhar, E. Hastings, C. R. Butson, K. D. Foote, P. Zeilman, M. S. Okun, and C. Oreja-Guevara, “Management of deep brain stimulator battery failure: Battery estimators, charge density, and importance of clinical symptoms,” PLoS One, Vol. 8, no. 3, e58665, 2013.
  • A. Eusebio, et al., “Deep brain stimulus can suppress pathological synchronisation in parkinsonian patients,” J Neurol. Neurosurg. Psychiatry, Vol. 82, no. 5, pp. 569–573, 2011.
  • G. Foffani, et al., “Altered subthalamo-pallidal synchronisation in parkinsonian dyskinesias,” J. Neurol. Neurosurg. Psychiatry, Vol. 76, no. 3, pp. 426–428, 2005.
  • A. A. Kühn, et al., “Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity,” Exp. Neurol., Vol. 215, no. 2, pp. 380–387, 2009.
  • C. R. Baumann, L. L. Imbach, H. Baumann-Vogel, M. Uhl, J. Sarnthein, and O. Sürücü, “Interleaving deep brain stimulation for a patient with both Parkinson’s disease and essential tremor,” Mov. Disord., Vol. 27, no. 13, pp. 1700–1701, 2012.
  • C. Pollo, et al., “Directional deep brain stimulus: An intraoperative double-blind pilot study,” Brain, Vol. 137, no. 7, pp. 2015–2026, 2014.
  • V. Rama Raju, “Device based analysis of local field potentials with deep brain stimulator during subthalamic nuclei recording in Parkinson disease,” IETE J. Res., October, 2020. (Under review).
  • W. Thevathasan, T. J. Coyne, J. A. Hyam, G. Kerr, N. Jenkinson, T. Z. Aziz, and P. A. Silburn, “Pedunculopon-tine nucleus stimulus improves gait freezing in Parkinson disease,” Neurosurgery, Vol. 69, no. 6, pp. 1248–1253, 2011.
  • M. F. Contarino, L. J. Bour, R. Verhagen, M. A. J. Lourens, R. M. A. de Bie, P. van den Munckhof, and P. R. Schuurman, “Directional steering: A novel approach to deep brain stimulus,” Neurology, Vol. 83, no. 13, pp. 1163–1169, 2014.
  • F. Steigerwald, L. Muller, S. Johannes, C. Matthies, and J. Volk-mann, “Directional deep brain stimulus of the subthalamic nucleus: A pilot study using a novel neurostimulus device,” Mov. Disord., Vol. 31, no. 8, pp. 1240–1243, 2016.
  • C. B. Maks, C. R. Butson, B. L. Walter, J. L. Vitek, and C. C. McIntyre, “Deep brain stimulus activation volumes and their association with neurophysiological mapping and therapeutic outcomes,” J. Neurol. Neurosurg. Psychiatry, Vol. 80, no. 6, pp. 659–666, 2009.
  • M. Arlotti, M. Rosa, S. Marceglia, S. Barbieri, and A. Priori, “The adaptive deep brain stimulus challenge,” Parkinsonism Related Disord., Vol. 28, pp. 12–17, 2016.
  • I. Basu, D. Graupe, D. Tuninetti, P. Shukla, K. V. Slavin, L. V. Metman, and D. M. Corcos, “Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design,” J. Neural Eng., Vol. 10, no. 3, 036019, 2013.
  • J. V. Basmajian, and C. J. De Luca. Muscles alive: their functions revealed by electromyography. Baltimore: Williams and Wilkins Publishing Comp, 1985.
  • P. Brown, “Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease,” Mov. Disord., Vol. 18, no. 4, pp. 357–363, 2003.
  • E. Florin, R. Erasmi, C. Reck, M. Maarouf, A. Schnitzler, G. R. Fink, and L. Timmermann, “Does increased gamma activity in patients suffering from Parkinson’s disease counter-act the movement inhibiting beta activity?,” Neuroscience, Vol. 237, pp. 42–50, 2013.
  • A. Priori, et al., “Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease,” Exp. Neurol., Vol. 189, no. 2, pp. 369–379, 2004.
  • J. B. Toledo, et al., “High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease,” Neurobiol. Dis., Vol. 64, pp. 60–65, 2014.
  • S. Little, et al., “Adaptive deep brain stimulation in advanced Parkinson disease,” Ann. Neurol., Vol. 74, no. 3, pp. 449–457, 2013.
  • S. Moore, “Using quantum computing to enhance cell imaging,” Nature, 1–4, Sep 9, 2019. Available: https://www.azoquantum.com/Article.aspx?ArticleID=145
  • M. Picillo, A. M. Lozano, N. Kou, R. P. Munhoz, and A. Fasano, “Programming Deep Brain stimulation for Parkinson’s disease: The Toronto Western Hospital algorithms,” Brain Stimul., Vol. 9, no. 3, pp. 425–437, May-Jun 2016.
  • A. Peppe, et al., “Deep brain stimulus of CM/PF of thalamus could be the new elective target for tremor in advanced Parkinson’s disease?,” Parkinsonism Related Disord., Vol. 14, no. 6, pp. 501–504, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.