234
Views
3
CrossRef citations to date
0
Altmetric
Medical Electronics

Adaptive Closed-Loop Deep Brain Stimulator Coding Techniques for Target Detections in Parkinson’s

, , , &

References

  • L. Benabid, S. Chabardes, J. Mitrofanis, and P. Pollak, “Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease,” Lancet Neurol., Vol. 8, pp. 67–81, 2009.
  • A. L. Benabid, “Q&A,” Nat. Methods, Vol. 20, no. 10, pp. xvii–xvxx, Oct. 2014.
  • M. R. DeLong, “Q&A,” Nat. Methods, Vol. 20, no. 10, pp. xv–xvii, Oct. 2014.
  • F. Hell, C. Palleis, J. H. Mehrkens, T. Koeglsperger, and K. Bötzel, “Deep brain stimulation programming 2.0: Future Perspectives for target identification and adaptive closed loop stimulation,” Front. Neurol., Vol. 10, pp. 1–11, Apr. 2019, Article No. 314.
  • V. Rama Raju, M. K. Rukmini, and R. Borgohain, “Effect of microelectrode recording in accurate targeting STN with high frequency DBS in Parkinson disease,” Taylor & Francis IETE J. Res., Vol. 65, no. 3, pp. 1–14, 2019.
  • A. Fasano, and A. M. Lozano, “Deep brain stimulation for movement disorders: 2015 and beyond,” Curr. Opin. Neurol., Vol. 28, pp. 423–36, 2015.
  • D. Anji Reddy, G. Narsimha, and V. Rama Raju, “Deep brain stimulator coding in Parkinson’s: An evolving approach,” IETE J. Res., pp. 1–14. July 2021. DOI:10.1080/03772063.2021.1950052.
  • V. Rama Raju, S. Konda, K. R. Balmuri, and B. S. V. Raju, “Circuitous goal of bSTN deep brain stimulator in Parkinson Disease: A study with fusion MRI guided by computed axial tomography and microneurosensor recording MER techniques,” Indian J. Neurosci., Vol. 6, no. 3, pp. 226–31, July-Sept 2020.
  • V. Rama Raju, S. Konda, K. R. Balmuri, B. Anvesh, and B. S. V. Raju, “MER based analysis of local field potentials with deep brain stimulator during subthalamic nuclei recording in Parkinson disease using coherence and entropy techniques,” Indian J. Neurosci., Vol. 6, no. 3, pp. 226–31, July-Sept 2020.
  • P. E. Holtzheimer, and H. S. Mayberg, “Deep brain stimulation for psychiatric disorders,” Annu. Rev. Neurosci., Vol. 34, pp. 289–307, 2011.
  • M. Aldehri, Y. Temel, I. Alnaami, A. Jahanshahi, and S. Hescham, “Deep brain stimulation for Alzheimer’s disease: An update,” Surg. Neurol. Int., Vol. 9, no. 58, pp. 58–68, 2018.
  • I. Telkes, et al., “Local field potentials of subthalamic nucleus contain electrophysiological footprints of motor subtypes of Parkinson’s disease,” PNAS, Vol. 115, no. 36, pp. E8567–E8576, 2018.
  • K. Ashkan, P. Rogers, H. Bergman, and I. Ughratdar, “Insights into the mechanisms of deep brain stimulation,” Nat. Rev. Neurol., Vol. 13, pp. 548–54, 2017.
  • S. Chiken, and A. Nambu, “Disrupting neuronal transmission: Mechanism of DBS?,” Front. Syst. Neurosci., Vol. 8, no. 33, pp. 1–8, March 2014.
  • S. Chiken, and A. Nambu, “Mechanism of deep brain stimulation: Inhibition, excitation, or disruption?,” Neuroscientist, Vol. 22, pp. 313–22, 2015.
  • T. M. Herrington, J. J. Cheng, and E. N. Eskandar, “Mechanisms of deep brain stimulation,” J. Neurophysiol., Vol. 115, pp. 19–38, 2016.
  • K. Kostoglou, “Classification and prediction of clinical improvement in deep brain stimulation from intraoperative microelectrode recording,” IEEE Trans. BME, Vol. 64, no. 5, pp. 1123–30, May. 2017.
  • S. Hans, D. Kim, H. Kim, J. W. Park, and I. Youn, “Electrical stimulation inhibits cytosine arabinoside-induce neuronal death by preventing apoptosis in dorsal root ganglion neurons,” Neuroreport, Vol. 27, no. 6, pp. 1217–24, 9 Nov. 2016.
  • A. W. Shukla, and M. S. Okun, “State of the art for deep brain stimulus therapy in movement disorders: A clinical and technological perspective,” IEEE Rev. Biomed. Eng., Vol. 9, pp. 219–33, 2016.
  • G. Meloni, A. Sen, A. Abosch, and N. F. Ince, “Spatial distribution of nonlinear interactions in subthalamic nucleus local field potentials in Parkinson’s disease,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Aug. 2015, pp. 5557–60.
  • S. Saxena, M. H. Schieber, N. V. Thakor, and S. V. Sarma, “Aggregate input-output models of neuronal populations,” IEEE Trans. Biomed. Eng, Vol. 59, no. 7, pp. 1–23, July. 2012.
  • S. M. Rissanen, et al., “Analysis of EMG and acceleration signals for quantifying the effects of deep brain stimulation in Parkinson’s disease,” IEEE Trans. Biomed. Eng., Vol. 58, no. 9, pp. 1–20, Sept. 2011. DOI:10.1109/TBME.2011.2159380.
  • D. Huberdeau, H. Walker, H. Huang, E. Montgomery, and S. V. Sarma, “Analysis of local field potential signals: A systems approach,” in 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts USA, 30 Aug – Sept. 2011.
  • S. V. Sarma, U. T. Eden, M. L. Cheng, Z. M. Williams, R. Hu, E. Eskandar, and E. N. Browne, “Using point process models to compare neural spiking activity in the subthalamic nucleus of Parkinson’s patients and a healthy primate,” IEEE Trans. Biomed. Eng., Vol. 57, no. 6, pp. 1297–1305, Jun. 2010.
  • J. C. F. V. Lima, M. H. deCarvalho, and J. M. B. Dias. “Analysis and classification of Microelectrode Recordings in Deep Brain Surgery,” Jose Lima, Sept 2015.
  • C. M. Davidson, A. M. De Paor, H. Cagnan, and M. M. Lowery, “Analysis of oscillatory neural activity in series network models of Parkinson’s disease during deep brain stimulation,” IEEE Trans. Biomed, Vol. 63, no. 1, pp. 86–106, Jan. 2016.
  • G. Deuschl, S. Paschen, and K. Witt, “Chapter 10 – clinical outcome of deep brain stimulation for Parkinson’s disease,” Handbook Clin. Neurol., Vol. 116, pp. 107–128, 2013.
  • A. Merola, M. Zibetti, S. Angrisano, L. Rizzi, V. Ricchi, and C. A. Artusi, “Parkinson’s disease progression at 30 years: A study of subthalamic deep brain-stimulated patients,” Brain A J Neurol, Vol. 134, pp. 2074–84, 2011.
  • A. Højlund, M. V. Petersen, K. S. Sridharan, and K. Østergaard, “Worsening of verbal fluency after deep brain stimulation in Parkinson’s disease: A focused review,” Comput. Struct. Biotechnol. J., Vol. 15, pp. 68–74, 2017.
  • A. W. Shukla, P. Zeilma, H. Fernandez, J. A. Bajwa, and R. Mehanna, “DBS programming: AN evolving approach for patients with Parkinson’s disease,” Hindawi Parkinson’s Disease, Vol. 2017, pp. 1–11, 2017.
  • L. Timmermann, R. Jain, L. Chen, M. Maarouf, M. T. Barbe, and N. Allert, “Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease: A non-randomised, prospective, multicentre, open-label study,” Lancet Neurol., Vol. 14, pp. 693–701, 2015.
  • C. R. Butson, S. E. Cooper, J. M. Henderson, and C. C. McIntyre, “Patient-specific analysis of the volume of tissue activated during deep brain stimulation,” NeuroImage, Vol. 34, pp. 661–70, 2007.
  • J. Schaeffer. “New Hope in Neuroprotection? A Parkinson’s disease Update,” Geriatric Medicine, Great Valley Publishing, 2019.
  • B. A. Sieber, S. C. Landis, T. J. Montine, et al., “Prioritized research recommendations from the national institute of neurological disorders, and stroke Parkinson’s disease,” Medicine Annals of Neurology, Vol. 76, no. 4, pp. 469–72, 1 Oct 2014.
  • M. D. Johnson, S. Miocinovic, C. C. McIntyre, and J. L. Vitek, “Mechanisms and targets of deep brain stimulation in movement disorders,” Neurotherapeutics, Vol. 5, pp. 294–308, 2008.
  • E. A. Accolla, R. M. Herrojo, A. Horn, G. H. Schneider, H. T. Schmitz, B. Draganski, et al., “Brain networks modulated by subthalamic nucleus deep brain stimulation,” Brain, Vol. 139, pp. 2503–15, 2016.
  • D. Anderson, G. Beecher, and F. Ba, “Deep brain stimulation in Parkinson’s disease: New and emerging targets for refractory motor and nonmotor symptoms,” Parkinsons Dis., Vol. 51, pp. 5124–328, 2017.
  • J. C. Klein, M. T. Barbe, C. Seifried, S. Baudrexel, M. Runge, M. Maarouf, et al., “The tremor network targeted by successful VIM deep brain stimulation in humans,” Neurology, Vol. 78, pp. 787–95, 2012.
  • S. Groppa, J. Herzog, D. Falk, C. Riedel, G. Deuschl, and J. Volkmann, “Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor,” Brain, Vol. 137, pp. 109–121, 2014.
  • V. A. Coenen, B. Varkuti, Y. Parpaley, S. Skodda, T. Prokop, H. Urbach, et al., “Postoperative neuroimaging analysis of DRT deep brain stimulation revision surgery for complicated essential tremor,” Acta Neurochir., Vol. 159, pp. 779–87, 2017.
  • H. Cagnan, S. Little, T. Foltynie, P. Limousin, L. Zrinzo, M. Hariz, et al., “The nature of tremor circuits in parkinsonian and essential tremor,” Brain, Vol. 137, pp. 3223–34, 2014.
  • S. Tisch, L. Zrinzo, P. Limousin, K. P. Bhatia, N. Quinn, K. Ashkan, et al., “Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia,” J. Neurol. Neurosurg. Psychiatr., Vol. 78, pp. 1314–9, 2007.
  • V. E. Rozanski, C. Vollmar, J. P. Cunha, S. M. N. Tafula, S. A. Ahmadi, M. Patzig, et al., “Connectivity patterns of pallidal DBS electrodes in focal dystonia: A diffusion tensor tractography study,” NeuroImage, Vol. 84, pp. 435–42, 2014.
  • T. A. Connolly, et al., “Local field potential recording in a non-primate model of Parkinson’s disease using the activa® PC + S neurostimulator,” J. Neural Eng., Vol. 12, no. 066012, pp. 1–25, 2019.
  • T. Morishita, and T. Inou, “Need for multiple biomarkers to adjust parameters of closed-loop deep brain stimulation for Parkinson’s disease,” Neural Eng. Res., Vol. 12, no. 5, pp. 747–9, Sept. 2018.
  • I. Telkes, et al., “Local field potentials of subthalamic nucleus contain electrophysiological footprints of motor subtypes of Parkinson’s disease,” PNAS, Vol. 115, no. 36, pp. E8567–E8576, Aug. 2018.
  • D. Zhao, Q. Sun, S. Cheng, M. He, X. Chen, and X. Hou, “Extraction of Parkinson’s disease-related features from local field potentials for adaptive deep brain stimulation,” Neurophysiology, Vol. 50, no. 1, pp. 57–60, Feb. 2018.
  • M. Parastarfeizabadi, and A. Z. Kouzani, “Advances in closed-loop deep brain stimulation devices,” J. Neuroeng. Rehabil., Vol. 14, no. 79, pp. 1–20, 2017.
  • D. D. Wang, et al., “Subthalamic local field potentials in Parkinson’s disease and isolated dystonia: An evaluation of potential biomarkers,” Neurobiol. Dis., Vol. 89, pp. 213–22, May. 2016.
  • A. J. Thompson, D. Lanctin, N. F. Ince, and A. Abosch, “Clinical implications of local field potentials for understanding and treating movement disorders,” Stereotact. Funct. Neurosurg., no. 92, pp. 814–17, 2014.
  • D. Huberdeau, H. Walker, H. Huang, E. Montgomery, and S. V. Sarma, “Analysis of local field potential signals: A systems approach,” in 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts USA, Aug. 30–Sept. 2011.
  • A. Kane, W. D. Hutchison, M. Hodaie, A. M. Lozano, and J. O. Dostrovsky, “Enhanced synchronization of thalamic theta band local field potentials in patients with essential tremor,” Exp. Neurol, Vol. 217, pp. 171–76, 2009. [PubMed: 19233174].
  • P. Brown, “Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease,” Mov. Disord., Vol. 18, no. 4, pp. 157–63, April 2003. DOI:10.1002/mds.10358.
  • M. M. N. Weinberger, W. D. Hutchison, A. M. Lozano, E. Moro, M. Hodaie, A. E. Lang, and J. O. Dostrovsky, “Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic re-sponse in Parkinson’s disease,” J. Neurophysiol., Vol. 96, pp. 3248–56, 2006.
  • I. Telkes, J. Jimenez-Shahed, A. Viswanathan, A. Abosch, and N. F. Ince, “Prediction of STN-DBS electrode implantation track in Parkinson’s disease by using local field potentials,” Front. Neurosci., Vol. 10, pp. 198–99, 2016. www.frontiersin.org.
  • J. A. Thompson, D. Lanctin, N. F. Ince, and A. Abosch, “Clinical implications of local field potentials for understanding and treating movement disorders,” Stereotact. Funct. Neurosurg., Vol. 92, pp. 251–63, 2014.
  • G. Foffani, G. Ardolino, M. Egidi, E. Caputo, B. Bossi, and A. Priori, “Subthalamic oscillatory activities at beta or higher frequency do not change after high-frequency DBS in Parkinson’s disease,” Brain Res. Bull., Vol. 69, pp. 123–30, 2006.
  • K. A. Follett, F. M. Weaver, M. Stern, K. Hur, C. L. Harris, P. Luo, et al., “Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease,” N. Engl. J. Med., Vol. 362, pp. 2077–91, 2010.
  • G. Tinkhauser, A. Pogosyan, I. Debove, A. Nowacki, S. A. Shah, K. Seidel, et al., “Directional local field potentials: A tool to optimize deep brain stimulation,” Mov. Disord., Vol. 33, pp. 159–64, 2018.
  • B. Rosin, et al., “Closed-loop deep brain stimulation is superior in ameliorating parkinsonism,” Neuron, Vol. 72, pp. 370–84, 2011.
  • L. Rossi, G. Foffani, S. Marceglia, F. Bracchi, S. Barbieri, and A. Priori, “An electronic device for artifact suppression in human local field potential recordings during deep brain stimulation,” J. Neural Eng., Vol. 4, pp. 96–106, 2007.
  • R. Levy, P. Ashby, W. D. Hutchison, A. E. Lang, A. M. Lozano, and J. D. Dostrovsky, “Dependence of subthalamic nucleus fluctuations on movement and dopamine in Parkinson’s disease,” Brain, Vol. 125, pp. 1196–1209, 2002.
  • A. Abosch, D. Lanctin, I. Onaran, L. Eberly, M. Spaniol, and N. F. Ince, “Long-term recordings of local field potentials from implanted deep brain stimulation electrodes,” Neurosurgery, Vol. 71, pp. 804–14, 2012.
  • G. T. Einevoll, C. Kayser, N. K. Logothesis, and S. Panjeri, “Modeling and analysis of local field potentials for studying the function of cortical circuits,” Nature Rev. Neurosci., Vol. 14, pp. 770–85, 2013.
  • P. Brown, “Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease,” Mov. Disord, Vol. 18, pp. 357–63, 2003.
  • F. Steigerwald, L. Müller, S. Johannes, C. Matthies, and J. Volkmann, “Directional deep brain stimulation of the subthalamic nucleus: A pilot study using a novel neurostimulation device,” Mov. Disord., Vol. 31, pp. 1240–63, 2016.
  • A. Horn, and A. A. Kühn, “Lead-DBS: A toolbox for deep brain stimulation electrode localizations and visualizations,” NeuroImage, Vol. 107, pp. 127–35, 2015.
  • Y. Duchin, R. R. Shamir, R. Patriat, J. Kim, J. L. Vitek, G. Sapiro, et al., “Patient-specific anatomical model for deep brain stimulation based on 7 tesla, MRI,” PLoS ONE, Vol. 13, pp. e02014–69, 2018.
  • A. Horn, N. Li, T. A. Dembek, A. Kappel, C. Boulay, S. Ewert, et al., “Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging,” NeuroImage, Vol. 184, pp. 293–316, 2019.
  • A. Husch, V. M. Petersen, P. Gemmar, J. Goncalves, and F. Hertel, “PaCER– a fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation,” Neuroimage Clin., Vol. 17, pp. 80–9, 2018.
  • P. M. Lauro, N. V. Arroyave, L. Huang, P. A. Taylor, K. A. Zaghloul, C. Lungu, et al., “DBS-proc: An open source process for DBS electrode localization and tractographic analysis,” Hum. Brain Mapp., Vol. 37, pp. 422–33, 2016.
  • P. M. Lauro, S. Lee, M. Ahn, A. Barborica, and W. F. Asaad, “DBStar: An open-source tool kit for imaging analysis with patient-customized deep brain stimulation platforms,” Stereotact. Funct. Neurosurg., Vol. 96, pp. 13–21, 2018.
  • C. Schmidt, P. Grant, M. Lowery, and U. van Rienen, “Influence of uncertainties in the material properties of brain tissue on the probabilistic volume of tissue activated,” IEEE Trans. Biomed. Eng., Vol. 60, pp. 1378–87, 2013.
  • K. Niazmand, K. Tonn, A. Kalaras, and U. M. Fietzek, “Mehrkens JH, lueth TC. quantitative evaluation of Parkinson’s disease using sensor based smart glove,” in Proceedings-IEEE Symposium on Computer-Based Medical Systems, Bristol, UK, 2011.
  • J. A. Herron, M. C. Thompson, T. Brown, H. J. Chizeck, J. G. Ojemann, and A. L. Ko, “Cortical brain-computer interface for closed-loop deep brain stimulation,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 25, pp. 2180–87, 2017.
  • R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning is direct adaptive optimal control,” IEEE Control Syst, Vol. 9, pp. 1054–54, 1992.
  • R. S. Sutton, and A. G. Barto, “Reinforcement learning: An introduction,” IEEE Trans. Neural Netw., Vol. 9, pp. 1–352, 1998. DOI:10.1109/TNN.1998.712192.
  • H. Cai, M. Lokhandwala, J. Zhu, C. Kilfoyle, J. Lee, L. Larson, et al., “A software-defined radio for wireless brain implants network,” in Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New York, ACM, 2018, pp. 852–54.
  • R. M. Neely, D. K. Piech, S. R. Santacruz, M. M. Maharbiz, and J. M. Carmena, “Recent advances in neural dust: Towards a neural interface platform,” Curr. Opin. Neurobiol., Vol. 50, pp. 64–71, 2018. DOI:10.1016/j.conb.2017.12.010.
  • V. R. Raju, K. Srinivas, K. R. Balmuri, A. Balabhadra, and B. S. V. Raju, “MER based analysis of local field potentials with deep brain stimulation subthalamic nucleus in Parkinson\ 's disease using coherence and entropy techniques,” IP Ind. J Neurosci, Vol. 6, no. 3, pp. 202–19, 2020.
  • R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky, “Synchronized neurona discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity,” J. Neurosci., Vol. 22, pp. 2855–61, 2002.
  • W. J. Neumann, K. Degen, G. H. Schneider, C. Brucke, J. Heubl, P. Brown, et al., “Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson’s disease,” Mov. Disord., Vol. 31, pp. 1748–51, 2016.
  • M. Beudel, A. Oswal, A. Jha, T. Foltynie, L. Zrinzo, M. Hariz, et al., “Oscillatory beta power correlates with akinesia-rigidity in the parkinsonian subthalamic nucleus,” Mov. Disord., Vol. 32, pp. 174–5, 2017.
  • A. A. Kühn, A. Kupsch, G. H. Schneider, and P. Brown, “Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease,” Eur. J. Neurosci., Vol. 23, pp. 1956–60, 2006.
  • A. A. Kühn, A. Tsui, T. Aziz, N. Ray, C. Brücke, A. Kupsch, et al., “Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity,” Exp. Neurol., Vol. 215, pp. 380–87, 2009.
  • A. A. Kühn, F. Kempf, C. Brücke, D. L. Gaynor, T. I. Martinez, A. Pogosyan, et al., “High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance,” J. Neurosci., Vol. 28, pp. 6165–73, 2008.
  • N. Jenkinson, and P. Brown, “New insights into the relationship between dopamine, beta oscillations and motor function,” Trends Neurosci., Vol. 34, pp. 611–18, 2011.
  • E. J. Quinn, Z. Blumenfeld, A. Velisar, M. M. Koop, L. A. Shreve, M. H. Trager, et al., “Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation,” Mov. Disord., Vol. 30, pp. 1750–58, 2015.
  • W. J. Neumann, F. Staub, A. Horn, J. Schanda, J. Mueller, G. H. Schneider, et al., “Deep brain recordings using an implanted pulse generator in Parkinson’s disease,” Neuromodulation., Vol. 19, pp. 20–3, 2016.
  • G. Tinkhauser, A. Pogosyan, H. Tan, D. M. Herz, A. A. Kühn, and P. Brown, “Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication,” Brain, Vol. 140, pp. 2968–81, 2017.
  • F. Alonso-Frech, I. Zamarbide, M. Alegre, M. C. Rodríguez-Oroz, J. Guridi, M. Manrique, et al., “Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease,” Brain, Vol. 129, pp. 1748–57, 2006.
  • M. Alegre, J. López-Azcárate, F. Alonso-Frech, M. C. Rodríguez-Oroz, M. Valencia, J. Guridi, et al., “Subthalamic activity during diphasic dyskinesias in Parkinson’s disease,” Mov. Disord., Vol. 27, pp. 1178–81, 2012.
  • A. A. Kühn, D. Williams, A. Kupsch, P. Limousin, M. Hariz, G. H. Schneider, et al., “Event-related beta desynchronization in human subthalamicnucleus correlates with motor performance,” Brain, Vol. 127, pp. 735–46, 2004.
  • C. Brücke, F. Kempf, A. Kupsch, G. H. Schneider, J. K. Krauss, T. Aziz, et al., “Movement-related synchronization of gamma activity is lateralized in patients with dystonia,” Eur. J. Neurosci, Vol. 27, pp. 2322–29, 2008.
  • C. Brücke, J. Huebl, T. Schonecker, W. J. Neumann, K. Yarrow, A. Kupsch, et al., “Scaling of movement is related to pallidal oscillations in patients with dystonia,” J. Neurosci., Vol. 32, pp. 1008–19, 2012.
  • R. Lofredi, W. J. Neumann, A. Bock, A. Horn, J. Huebl, S. Siegert, et al., “Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson’s disease,” Elife, Vol. 7, pp. 1–22, 2018.
  • T. E. Özkurt, and A. and Schnitzler, “A critical note on the definition of phase-amplitude cross-frequency coupling,” J. Neurosci. Methods, Vol. 201, pp. 438–43, 2011.
  • T. E. Özkurt, M. Butz, M. Homburger, S. Elben, J. Vesper, L. Wojtecki, et al., “High frequency oscillations in the subthalamic nucleus: A neurophysiological marker of the motor state in Parkinson’s disease,” Exp. Neurol., Vol. 229, pp. 324–31, 2011.
  • B. C. M. van Wijk, M. Beudel, A. Jha, A. Oswal, T. Foltynie, M. I. Hariz, et al., “Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease,” Clin. Neurophysiol., Vol. 127, pp. 2010–9, 2016.
  • H. Cagnan, J. S. Brittain, S. Little, T. Foltynie, P. Limousin, L. Zrinzo, et al., “Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation,” Brain, Vol. 136, pp. 3062–75, 2013.
  • A. A. Kuhn, T. Trottenberg, A. Kivi, A. Kupsch, G. H. Schneider, and P. Brown, “The relationship be-tween local field potential and neuronal dis-charge in the subthalamic nucleus of patients with Parkinson’s disease,” Exp. Neurol., Vol. 194, pp. 212–20, 2005.
  • A. Kane, W. D. Hutchison, M. Hodaie, A. M. Lozano, and J. O. Dostrovsky, “Enhanced synchronization of thalamic theta band local field potentials in patients with essential tremor,” Exp. Neurol, Vol. 217, pp. 171–76, 2009.
  • J. J. Van Gompel, S. Y. Chang S, S. J. Goerss, I. Y. Kim, C. Kimble, K. E. Bennet, et al., “Development of intraoperative electrochemical detection: Wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback,” Neurosurg. Focus, Vol. 29, pp. 1–14, 2010.
  • P. J. Grahn, G. W. Mallor, O. U. Khurram, B. M. Berry, J. T. Hachmann, A. J. Bieber, et al., “A neurochemical closed-loop controller for deep brain stimulation: Toward individualized smart neuromodulation therapies,” Front. Neurosci., Vol. 8, pp. 1–11, 2014.
  • L. Lonini, et al., “Wearable sensors for Parkinson’s disease: Which data are worth collecting for training symptom detection models,” Nature npj Digital Medicine, Vol. 64, pp. 1–8, 2018.
  • D. A. Heldman, C. L. Pulliam, M. E. Urrea, M. Gartner, J. P. Giuffrida, E. B. Montgomery Jr., et al., “Computer-guided deep brain stimulation programming for Parkinson’s disease,” Neuromodulation., Vol. 19, pp. 127–32, 2016.
  • H. Cagnan, D. Pedrosa, S. Little, A. Pogosyan, B. Cheeran, T. Aziz, et al., “Stimulating at the right time: Phase-specific deep brain stimulation,” Brain, Vol. 140, pp. 132–45, 2017.
  • C. L. Pulliam, D. A. Heldman, T. H. Orcutt, T. O. Mera, J. P. Giuffrida, and J. L. Vitek, “Motion sensor strategies for automated optimization of deep brain stimulation in Parkinson’s disease,” Parkinsonism Related Disord., Vol. 21, pp. 378–82, 2015.
  • S. Little, A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz, et al., “Adaptive deep brain stimulation in advanced Parkinson disease,” Ann. Neurol., Vol. 74, pp. 449–57, 2013.
  • J. Wang, J. Hirschmann, S. Elben, C. J. Hartmann, J. Vesper, L. Wojtecki, et al., “High-frequency oscillations in Parkinson’s disease: Spatial distribution and clinical relevance,” Mov. Disord., Vol. 29, pp. 1265–72, 2014.
  • F. Hell, A. Plate, J. H. Mehrkens, and K. Bötzel, “Subthalamic oscillatory activity and connectivity during gait in Parkinson’s disease,” Neuroimage. Clin., Vol. 19, pp. 396–405, 2018.
  • J. S. Brittain, S. P. Probert, T. Z. Aziz, and P. Brown, “Tremor suppression by rhythmic transcranial current stimulation,” Curr. Biol., Vol. 23, pp. 436–40, 2013.
  • M. Zeitler, and P. A. Tass, “Augmented brain function by coordinated reset stimulation with slowly varying sequences,” Front. Syst. Neurosci., Vol. 9, pp. 1–11, 2015.
  • M. Ebert, C. Hauptmann, and P. A. Tass, “Coordinated reset stimulation in a large-scale model of the STN-GPe circuit,” Front. Comput. Neurosci., Vol. 8, pp. 1–20, 2014.
  • I. Adamchic, C. Hauptmann, U. B. Barnikol, N. Pawelczyk, O. Popovych, T. T. Barnikol, et al., “Coordinated reset neuromodulation for Parkinson’s disease: Proof-of-concept study,” Mov. Disord., Vol. 29, pp. 1679–84, 2014.
  • N. Grossman, D. Bono, N. Dedic, S. B. Kodandaramaiah, A. Rudenko, H. J. Suk, et al., “Noninvasive deep brain stimulation via temporally interfering electric fields,” Cell, Vol. 169, pp. 1029–41, 2017.
  • A. M. Lozano, “Waving hello to noninvasive deep-brain stimulation,” N. Engl. J. Med., Vol. 377, pp. 1096–98, 2017.
  • V. Gradinaru, M. Mogri, K. R. Thompson, J. M. Henderson, and K. Deisseroth, “Optical deconstruction of parkinsonian neural circuitry,” Science, Vol. 324, pp. 354–59, 2009.
  • J. G. Bernstein, P. A. Garrity, and E. S. Boyden, “Optogenetics and thermogenetics: Technologies for controlling the activity of targeted cells within intact neural circuit,” Curr. Opin. Neurobiol., Vol. 22, pp. 61–71, 2012.
  • W. J. Neumann, R. S. Turner, B. Blankertz, T. Mitchell, A. A. Kühn, and R. M. Richardson, “Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders,” Neurotherapeutics, Vol. 16, pp. 105–18, 2019.
  • R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter, K. Eggensperger, M. Tangermann, et al., “Deep learning with convolutional neural networks for EEG decoding and visualization,” Hum. Brain Mapp., Vol. 38, pp. 5391–420, 2017.
  • F. Hell, J. H. Mehrkens, and K. Bötzel, “Feedback signals for adaptive DBS. current perspectives and future directions”, | “Auf dem Weg zur adaptiven hirnstimulation,” Neurophysiologie Labor, Vol. 40, pp. 179–88, 2018.
  • F. Hell, T. Köglsperger, and K. Boetzel, “Improving the standard for deep brain stimulation therapy: Target structures and feedback signals for adaptive stimulation. current perspectives and future directions,” Cureus., Vol. 10, pp. 1–8, 2018.
  • J. V. Basmajian, and C. J. De Luca. Muscles alive: Their functions revealed by electromyography, 5th ed. Baltimore, USA: Williams and Wilkins Publishing Comp, 1985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.