100
Views
2
CrossRef citations to date
0
Altmetric
Power Electronics

Effective Power Congestion Management Technique Using Hybrid Nelder–Mead – Grey Wolf Optimizer (HNMGWO) in Deregulated Power System

ORCID Icon, & ORCID Icon

References

  • X. Wang, Y. H. Song, and Q. Lu, “Lagrangian decomposition approach to active power congestion management across interconnected regions,” IEE Proc. Gener. Transm. Distrib., Vol. 148, no. 5, pp. 497–503, 2001. doi:10.1049/ip-gtd:20010490
  • X. Wang, Y. H. Song, and Q. Lu, “Primal-dual interior point linear programming optimal power flow for real-time congestion management,” In 2000 IEEE Power Engineering Society Winter Meeting Conference Proceedings, Vol. 3, pp. 1643–1649, 2000. doi:10.1109/PESW.2000.847591
  • M. Esmaili, N. Amjady, and H. A. Shayanfar, “Multi-objective congestion management by modified augmented ϵ-constraint method,” Appl. Energy, Vol. 88, no. 3, pp. 755–766, 2011. doi:10.1016/j.apenergy.2010.09.014
  • A. Kumar, S. C. Srivastava, and S. N. Singh, “A zonal congestion management approach using real and reactive power rescheduling,” IEEE Trans. Power Syst., Vol. 19, no. 1, pp. 554–562, 2004. doi:10.1109/TPWRS.2003.821448
  • Y. Xiao, P. Wang, and L. Goel, “Congestion management in hybrid power markets,” Electr. Power Syst. Res., Vol. 79, no. 10, pp. 1416–1423, 2009. doi:10.1016/j.epsr.2009.04.011
  • M. Esmaili, F. Ebadi, and H. A. Shayanfar, “Jadid S “congestion management in hybrid power markets using modified benders decomposition”,” Appl. Energy, Vol. 102, pp. 1004–1012, 2013. doi:10.1016/j.apenergy.2012.06.019
  • G. Yesuratnam and D. Thukaram, “Congestion management in open access based on relative electrical distances using voltage stability criteria,” Electr. Power Syst. Res., Vol. 77, no. 12, pp. 1608–1618, 2007. doi:10.1016/j.epsr.2006.11.007
  • G. Granelli, M. Montagna, F. Zanellini, P. Bresesti, R. Vailati, and M. Innorta, “Optimal network reconfiguration for congestion management by deterministic and genetic algorithms,” Electr. Power Syst. Res., Vol. 76, no. 6–7, pp. 549–556, 2006. doi:10.1016/j.epsr.2005.09.014
  • J. Hazra, and A. K. Sinha, “Congestion management using multi-objective particle swarm optimization,” IEEE Trans. Power Syst., Vol. 22, no. 4, pp. 1726–1734, 2007. doi:10.1109/TPWRS.2007.907532
  • S. Dutta, and S. P. Singh, “Optimal rescheduling of generators for congestion management based on particle swarm optimization,” IEEE Trans. Power Syst., Vol. 23, no. 4, pp. 1560–1569, 2008. doi:10.1109/TPWRS.2008.922647
  • P. Boonyaritdachochai, C. Boonchuay, and W. Ongsakul, “Optimal congestion management in electricity market using particle swarm optimization with time varying acceleration coefficients,” In AIP Conf Proc, Vol. 1239, no. 1, pp. 382–387. American Institute of Physics, 2010. doi:10.1063/1.3459776
  • V. R. Pandi, A. Biswas, S. Dasgupta, and B. K. Panigrahi, “A hybrid bacterial foraging and differential evolution algorithm for congestion management,” Eur. Trans. Electr. Power, Vol. 20, no. 7, pp. 862–871, 2010.
  • C. Venkaiah, and D. M. Vinod Kumar, “Fuzzy adaptive bacterial foraging congestion management using sensitivity based optimal active power re-scheduling of generators,” Appl. Soft. Comput., Vol. 11, no. 8, pp. 4921–4930, 2011. doi:10.1016/j.asoc.2011.06.007
  • J. J. D. Nesamalar, P. Venkatesh, and S. Charles Raja, “Managing multi-line power congestion by using hybrid Nelder–Mead–fuzzy adaptive particle swarm optimization (HNM-FAPSO),” Appl. Soft. Comput., Vol. 43, pp. 222–234, 2016. doi:10.1016/j.asoc.2016.02.013
  • A. Basak, S. Pal, V. Ravikumar Pandi, B. K. Panigrahi, and S. Das, “A hybrid differential invasive weed algorithm for congestion management,” in In International Conference on Swarm, Evolutionary, and Memetic Computing, Springer, Berlin, Heidelberg, 2010, pp. 630–638.
  • O. Abedinia, N. Amjady, and M. S. Naderi, “Optimal congestion management in an electricity market using modified invasive weed optimization,” in In 2012 11th International Conference on Environment and Electrical Engineering, pp. 467–472. IEEE, 2012.
  • R. N. S. Mei, M. H. Sulaiman, Z. Mustaffa, and H. Daniyal, “Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,” Appl. Soft. Comput., Vol. 59, pp. 210–222, 2017. doi:10.1016/j.asoc.2017.05.057
  • C. K. Yogesh, M. Hariharan, R. Ngadiran, A. H. Adom, S. Yaacob, C. Berkai, and K. Polat, “A new hybrid PSO assisted biogeography-based optimization for emotion and stress recognition from speech signal,” Expert. Syst. Appl., Vol. 69, pp. 149–158, 2017. doi:10.1016/j.eswa.2016.10.035
  • P. Liu, and J. Liu, “Multi-leader PSO (MLPSO): A new PSO variant for solving global optimization problems,” Appl. Soft. Comput., Vol. 61, pp. 256–263, 2017. doi:10.1016/j.asoc.2017.08.022
  • A. Mozaffari, M. Azimi, and M. Gorji-Bandpy, “Ensemble mutable smart bee algorithm and a robust neural identifier for optimal design of a large scale power system,” J. Comput. Sci., Vol. 5, no. 2, pp. 206–223, 2014. doi:10.1016/j.jocs.2013.10.007
  • L. M. Abualigah, A. T. Khader, E. S. Hanandeh, and A. H. Gandomi, “A novel hybridization strategy for krill herd algorithm applied to clustering techniques,” Appl. Soft. Comput., Vol. 60, pp. 423–435, 2017. doi:10.1016/j.asoc.2017.06.059
  • J. J. D. Nesamalar, P. Venkatesh, and S. Charles Raja, “Energy management by generator rescheduling in congestive deregulated power system,” Appl. Energy, Vol. 171, pp. 357–371, 2016. doi:10.1016/j.apenergy.2016.03.029
  • J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J., Vol. 7, no. 4, pp. 308–313, 1965. doi:10.1093/comjnl/7.4.308
  • S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv. Eng. Softw., Vol. 69, pp. 46–61, 2014. doi:10.1016/j.advengsoft.2013.12.007
  • A. A. Heidari and P. Pahlavani, “An efficient modified grey wolf optimizer with lévy flight for optimization tasks,” Appl. Soft. Comput., Vol. 60, pp. 115–134, 2017. doi:10.1016/j.asoc.2017.06.044
  • L. Rodríguez, et al., “A fuzzy hierarchical operator in the grey wolf optimizer algorithm,” Appl. Soft. Comput., Vol. 57, pp. 315–328, 2017. doi:10.1016/j.asoc.2017.03.048
  • M. H. Sulaiman, Z. Mustaffa, M. R. Mohamed, and O. Aliman, “Using the gray wolf optimizer for solving optimal reactive power dispatch problem,” Appl. Soft. Comput., Vol. 32, pp. 286–292, 2015. doi:10.1016/j.asoc.2015.03.041
  • B. Mahdad, and K. Srairi, “Blackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithms,” Energy Convers. Manage., Vol. 98, pp. 411–429, 2015. doi:10.1016/j.enconman.2015.04.005
  • G. M. Komaki, and V. Kayvanfar, “Grey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time,” J. Comput. Sci., Vol. 8, pp. 109–120, 2015. doi:10.1016/j.jocs.2015.03.011
  • J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim., Vol. 9, no. 1, pp. 112–147, 1998. doi:10.1137/S1052623496303470
  • Rich Christie 30-bus system Power Flow Test Case. https://www.ee.washington.edu/research/pstca/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.