113
Views
0
CrossRef citations to date
0
Altmetric
Control Engineering

Combined Input–Output Finite-time Stability with H Static Output-feedback Control Approach for Active Suspension

ORCID Icon &

REFERENCES

  • R. Rajamani. Vehicle Dynamics and Control. New York: Springer, 2011.
  • A. Arivazhagan, and K. Arunachalam, “Investigation and performance comparison of ride comfort on the created human vehicle road integrated model adopting genetic algorithm optimized proportional integral derivative control technique,” in Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 234, no. 2, pp. 288–305, 2020.
  • S. Türkay, and H. Akçay, “Aspects of achievable performance for quarter-car active suspensions,” J. Sound. Vib., Vol. 311, no. 1–2, pp. 440–60, 2008.
  • M. M. Elmadany, and Z. S. Abduljabbar, “Linear quadratic Gaussian control of a quarter-car suspension,” Veh. Syst. Dyn., Vol. 32, no. 6, pp. 479–97, 1999.
  • Ş Yildirim, “Vibration control of suspension systems using a proposed neural network,” J. Sound. Vib., Vol. 277, no. 4–5, pp. 1059–69, 2004.
  • T. Yoshimura, A. Kume, M. Kurimoto, and J. Hino, “Construction of an active suspension system of a quarter car model using the concept of sliding mode control,” J. Sound. Vib, Vol. 239, no. 2, pp. 187–99, 2001.
  • V. S. Deshpande, P. D. Shendge, and S. B. Phadke, “Active suspension systems for vehicles based on a sliding-mode controller in combination with inertial delay control,” Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, Vol. 227, pp. 675–90, 2013.
  • W. Sun, H. Gao, and O. Kaynak, “Adaptive backstepping control for active suspension systems with hard constraints,” IEEE/ASME Trans. Mechatron., Vol. 18, no. 3, pp. 1072–9, 2013.
  • M. Y. Shieh, J. S. Chiou, and M. T. Liu, “Design of immune-algorithm-based adaptive fuzzy controllers for active suspension systems,” Adv. Mech. Eng., Vol. 6, pp. 916257(1)–916257(8), 2014.
  • H. Du, and N. Zhang, “H∞ control of active vehicle suspensions with actuator time delay,” J. Sound. Vib., Vol. 301, no. 1–2, pp. 236–52, 2007.
  • K. Karim Afshar, and A. Javadi, “Constrained H∞ control for a half-car model of an active suspension system with actuator time delay by predictor feedback,” J. Vib. Control, Vol. 25, no. 10, pp. 1673–92, 2019.
  • Z. Gu, S. Fei, Y. Zhao, and E. Tian, ““Robust control of automotive active seat-suspension system subject to actuator saturation,” J. Dyn. Syst. Meas. Control Trans. ASME, Vol. 136, no. 4, pp. 041022(1)–041022(7), 2014.
  • H. Li, X. Jing, and H. R. Karimi, “Output-Feedback-Based control for vehicle suspension systems With control delay,” IEEE Trans. Ind. Electron., Vol. 61, pp. 436–46, 2014.
  • H. Chen, and K. H. Guo, “Constrained H∞ control of active suspensions: An LMI approach,” IEEE Trans. Control Syst. Technol., Vol. 13, no. 3, pp. 412–21, 2005.
  • C. Wei, K. Zhang, Y. Cai, Z. Wang, and W. Yu, “A new method of static output-feedback H∞ controller design for 5 DOF vehicle active suspension system,” J. Braz. Soc. Mech. Sci. Eng., Vol. 40, no. 3, pp. 1–12, 2018.
  • G. Wang, C. Chen, and S. Yu, “Optimization and static output-feedback control for half-car active suspensions with constrained information,” J. Sound. Vib., Vol. 378, pp. 1–13, 2016.
  • G. Wang, C. Chen, and S. Yu, “Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems,” Mech. Syst. Signal. Process., Vol. 91, pp. 41–56, 2017.
  • W. Sun, H. Gao, and O. Kaynak, “Finite frequency H∞ control for vehicle active suspension systems,” IEEE Trans. Control Syst. Technol., Vol. 19, no. 2, pp. 416–22, 2011.
  • A. Siami, H. R. Karimi, and A. Cigada, “Static output-feedback H∞ control design for a 5 degree-of-freedom isolator under physical constraints and restricted frequency domain,” Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering., Vol. 232, no. 2, pp. 195–208, 2018.
  • W. Sun, J. Li, Y. Zhao, and H. Gao, “Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic,” Mechatronics (Oxf), Vol. 21, no. 1, pp. 250–60, 2011.
  • F. Amato, R. Ambrosino, C. Cosentino, and G. De Tommasi, “Input-output finite time stabilization of linear systems,” Automatica (Oxf), Vol. 46, no. 9, pp. 1558–62, 2010.
  • F. Amato, G. Carannante, and G. De Tommasi, “Input-output finite-time stabilisation of a class of hybrid systems via static output feedback,” Int. J. Control, Vol. 84, no. 6, pp. 1055–66, 2011.
  • F. Amato, G. Carannante, G. De Tommasi, and A. Pironti, “Input-output finite-time stability of linear systems: necessary and sufficient conditions,” IEEE Trans. Autom. Control, Vol. 57, no. 12, pp. 3051–63, 2012.
  • W. Xue, and K. Li, “Input-output finite-time stability of time-delay systems and its application to active vibration control,” in IEEE International Conference on Automation Science and Engineering, 2014, pp. 878–882.
  • W. Xue, K. Li, Q. Chen, and G. Liu, “Mixed FTS/H∞ control of vehicle active suspensions with shock road disturbance,” Veh. Syst. Dyn., Vol. 57, no. 6, pp. 841–54, 2019.
  • H. Du, N. Zhang, and J. Lam, “Parameter-dependent input-delayed control of uncertain vehicle suspensions,” J. Sound. Vib., Vol. 317, no. 3–5, pp. 537–56, 2008.
  • Mechanical vibration and shock: evaluation of human exposure to whole-body vibration. Part 1, General Requirements: International Standard ISO 2631-1: 1997 (E), 1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.