213
Views
3
CrossRef citations to date
0
Altmetric
Medical Electronics

Surface Electromyogram Feature Set Optimization for Lower Limb Activity Classification

, ORCID Icon &

References

  • A. Parri, et al., “Whole body awareness for controlling a robotic transfemoral prosthesis,” Front. Neurorobot, Vol. 11, no. May, pp. 1–14, 2017. doi:10.3389/fnbot.2017.00025.
  • M. Windrich, M. Grimmer, O. Christ, S. Rinderknecht, and P. Beckerle, “Active lower limb prosthetics: a systematic review of design issues and solutions,” Biomed. Eng. Online, Vol. 15, no. S3, pp. 5–19, 2016. doi: 10.1186/s12938-016-0284-9.
  • S. Au, M. Berniker, and H. Herr, “Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits,” Neural Netw., Vol. 21, no. 4, pp. 654–666, 2008. doi: 10.1016/j.neunet.2008.03.006.
  • P. Cherelle, V. Grosu, A. Matthys, B. Vanderborght, and D. Lefeber, “Design and validation of the ankle mimicking,” IEEE Trans. NEURAL Syst. Rehabil. Eng, Vol. 22, no. 1, pp. 138–148, 2014.
  • M. E. Joshi, D. Hahn, D. Joshi, M. E. Hahn, M. E. Joshi, and D. Hahn, “Terrain and direction classification of locomotion transitions using neuromuscular and mechanical input,” Ann. Biomed. Eng, Vol. 44, no. 4, pp. 1275–1284, 2016. doi: 10.1007/s10439-015-1407-3.
  • H. Vallery, R. Burgkart, C. Hartmann, J. Mitternacht, R. Riener, and M. Buss, “Complementary limb motion estimation for the control of active knee prostheses,” Biomed. Tech, Vol. 56, no. 1, pp. 45–51, 2011. doi: 10.1515/BMT.2010.057.
  • D. Joshi, R. Singh, R. Ribeiro, S. Srivastava, U. Singh, and S. Anand, “Development of echo control strategy for AK prosthesis: An embedded system approach,” in International Conference on Systems in Medicine and Biology, ICSMB 2010 – Proceedings, no. December, 2010, pp. 143–147. doi: 10.1109/ICSMB.2010.5735361
  • K. Yuan, Q. Wang, and L. Wang, “Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees,” IEEE Trans. Mechatronics, Vol. 20, no. 2, pp. 618–630, 2015.
  • B. Chen, E. Zheng, and Q. Wang, “A locomotion intent prediction system based on multi-sensor fusion,” Sensors, Vol. 14, pp. 12349–12369, 2014. doi:10.3390/s140712349.
  • A. J. Young, and L. J. Hargrove, “A classification method for user-independent intent recognition for transfemoral amputees using powered lower limb prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng, Vol. 24, no. 2, pp. 217–225, 2016. doi:10.1109/TNSRE.2015.2412461.
  • A. J. Young, A. M. Simon, N. P. Eey, and L. J. Hargrove, “Intent recognition in a powered lower limb prosthesis using time history information,” Ann. Biomed. Eng, Vol. 42, no. 3, pp. 631–641, 2014. doi: 10.1007/s10439-013-0909-0.
  • J. D. Miller, M. S. Beazer, and M. E. Hahn, “Myoelectric walking mode classification for transtibial amputees,” IEEE Trans. Biomed. Eng, Vol. 60, no. 10, pp. 2745–2750, 2013. doi: 10.1109/TBME.2013.2264466.
  • C. D. Hoover, G. D. Fulk, and K. B. Fite, “Stair ascent with a powered transfemoral prosthesis under direct myoelectric control,” IEEE Trans. Mechatronics, Vol. 18, no. 3, pp. 1191–1200, 2013. doi: 10.1109/TMECH.2012.2200498.
  • H. A. Varol, F. Sup, and M. Goldfarb, “Multiclass real-time intent recognition of a powered lower limb prosthesis,” IEEE Trans. Biomed. Eng, Vol. 57, no. 3, pp. 542–551, 2010. doi: 10.1109/TBME.2009.2034734.
  • F. Sup, H. A. Varol, and M. Goldfarb, “Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject,” IEEE Trans. Neural Syst. Rehabil. Eng, Vol. 19, no. 1, pp. 71–78, 2011. doi: 10.1109/TNSRE.2010.2087360.
  • B. Chen, et al., “A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution,” Mechatronics (Oxford), Vol. 32, no. October, pp. 12–21, 2015. doi: 10.1016/j.mechatronics.2015.09.002.
  • A. J. Young, A. M. Simon, and L. J. Hargrove, “A training method for locomotion mode prediction using powered lower limb prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng, Vol. 22, no. 3, pp. 671–677, 2014.
  • I. S. Dhindsa, R. Agarwal, and H. S. Ryait, “Principal component analysis-based muscle identification for myoelectric-controlled exoskeleton knee,” J. Appl. Stat, Vol. 44, no. 10, pp. 1707–1720, 2016. doi: 10.1080/02664-763.2016.1221907.
  • M. T. Farrell, and H. Herr. “A method to determine the optimal features for control of a powered lower-limb prostheses,” in 33rd Annual International Conference of the IEEE EMBS, 2011, pp. 6041–6046.
  • X. Zhang, D. Wang, Q. Yang, and H. Huang. “An automatic and user-driven training method for locomotion mode recognition for artificial leg control,” in 34th Annual International Conference of the IEEE EMBS, 2012, pp. 6116–6119.
  • L. Du, F. Zhang, M. Liu, and H. Huang, “Toward design of an environment-aware adaptive locomotion-mode-recognition system,” IEEE Trans. Biomed. Eng, Vol. 59, no. 10, pp. 2716–2725, 2012.
  • F. Zhang, and H. Huang, “Source selection for real-time user intent recognition toward volitional control of artificial legs,” IEEE J. Biomed. Heal. Informatics, Vol. 17, no. 5, pp. 907–914, 2013.
  • A. J. Young, T. A. Kuiken, and L. J. Hargrove, “Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses,” J. Neural Eng., Vol. 11, no. 5, pp. 1–12, 2014. doi: 10.1088/1741-2560/11/5/056021.
  • J. A. Spanias, A. M. Simon, K. A. Ingraham, and L. J. Hargrove, “Effect of Additional Mechanical Sensor Data on an EMG – based Pattern Recognition System for a Powered Leg Prosthesis,” in IEEE EMBS Conference on Neural Engineering, 2015, pp. 22–24. doi: 10.1109/NER.2015.7146704.
  • M. Liu, D. Wang, and H. H. Huang, “Development of an environment-aware locomotion mode recognition system for powered lower limb prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 24, no. 4, pp. 434–443, 2016. doi: 10.1109/TNSRE.2015.2420539.
  • H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B. Englehart, “Continuous locomotion-mode identification for prosthetic Legs based on neuromuscular – mechanical fusion,” IEEE Trans. Biomed. Eng, Vol. 58, no. 10, pp. 2867–2875, 2011.
  • A. Young, A. Simon, and L. Hargrove, “An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes,” in Annual International Conference of the IEEE EMBS, 2013, pp. 1587–1590.
  • S. Pati, D. Joshi, and A. Mishra. Locomotion classification using EMG signal,” in 2010 International Conference on Information and Emerging Technologies, 2010, pp. 1–6. doi: 10.1109/ICIET.2010.5625677.
  • H. Huang, F. Zhang, Y. L. Sun, and H. He, “Design of a robust EMG sensing interface for pattern classification,” J. Neural Eng, Vol. 7, no. 5, pp. 056005, 2010. doi: 10.1088/1741-2560/7/5/056005.
  • T. Afzal, K. Iqbal, G. White, and A. Wright, “A method for locomotion mode identification using muscle synergies,” IEEE Trans. Neural Syst. Rehabil. Eng, Vol. 25, no. 6, pp. 608–617, 2017. doi: 10.1109/TNSRE.2016.2585962.
  • G. Chandrashekar, and F. Sahin, “A survey on feature selection methods,” Comput. Electr. Eng, Vol. 40, no. 1, pp. 16–28, 2014. doi: 10.1016/j.compeleceng.2013.11.024.
  • S. Soman, D. Jayadeva, S. Arjunan, and D. K. Kumar, “Improved sEMG signal classification using the Twin SVM,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 – Conference Proceedings, 2017, pp. 4507–4512. doi: 10.1109/SMC.2016.7844-942.
  • P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in feature selection,” Pattern Recognit. Lett, Vol. 15, no. 11, pp. 1119–1125, 1994. doi: 10.1016/0167-8655(94)90127-9.
  • J. Reunanen, “Overfitting in making comparisons between variable selection methods,” J. Mach. Learn. Res, Vol. 3, pp. 1371–1382, 2003. doi: 10.1162/153244303322753715.
  • P. Somol, P. Pudil, J. Novovicova, and P. Paclik, “Adaptive floating search methods in feature selection,” Pattern Recognit. Lett, Vol. 14, no. 2, pp. 88–100, 1999. doi: 10.1016/S0167-8655(99)00083-5.
  • B. Xue, M. Zhang, S. Member, W. N. Browne, S. Member, and W. N. Browne, “Particle swarm optimization for feature selection in classification: a multi-objective approach,” IEEE Trans. Cybern, Vol. 43, no. 6, pp. 1656–1671, 2013. doi: 10.1109/TSMCB.2012.2227469.
  • R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, “Relief-based feature selection: introduction and review,” J. Biomed. Inform, Vol. 85, no. June, pp. 189–203, 2018. doi: 10.1016/j.jbi.2018.07.014.
  • P. Pudil, and J. Novovicova, “Novel methods for subset selection with respect to problem knowledge,” IEEE Intell. Syst. Their Appl, Vol. 13, no. 2, pp. 66–74, 1998. doi: 10.1109/5254.671094.
  • B. Senliot, G. Gulgezen, L. Yu, and Z. Cataltepe, “Fast correlation based filter (FCBF) with a different search strategy,” in 23rd International Symposium on Computer and Information Sciences, 1–4, 2008. doi: 10.1109/ISCIS.2008.4717949.
  • M. A. Hall, “Correlation-based feature selection for discrete and numeric class machine learning,” in 17th International Conference Machine Learning, 2000, pp. 359–366.
  • SENIAM. “Sensors location: Recommendations for sensor locations on individual muscles,” 2016. http://seniam.org/sensor_location.htm (accessed Feb. 20, 2020).
  • Wireless Nexus-10. “A 10 channel physiological monitoring and feedback platform,” 2018.
  • I. S. Dhindsa, R. Agarwal, and H. S. Ryait, “A Novel algorithm to predict knee angle from EMG signals for controlling a lower limb exoskeleton,” in International Conference Information Technology and Nanotechnology, 2016, pp. 536–541. doi: 10.18287/1613-0073-2016-1638-536-541
  • R. Gupta, and R. Agarwal, “Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control,” Arab. J. Sci. Eng, Vol. 43, no. 12, pp. 7817–7835, 2018. doi: 10.1007/s13369-018-3193-3.
  • N. Nazmi, M. Abdul Rahman, S.-I. Yamamoto, S. Ahmad, H. Zamzuri, and S. Mazlan, “A review of classification techniques of EMG signals during isotonic and isometric contractions,” Sensors, Vol. 16, no. 8, pp. 1304, 2016. doi: 10.3390/s16081304.
  • Q. Ai, Y. Zhang, W. Qi, Q. Liu, and K. Chen, “Research on lower limb motion recognition based on fusion of sEMG and accelerometer signals,” Symmetry (Basel)., Vol. 9, no. 8, pp. 1–19, 2017. doi: 10.3390/sym9080147.
  • K. Englehart, and B. Hudgins, “A robust, real-time control scheme for multifunction myoelectric control,” IEEE Trans. Biomed. Eng, Vol. 50, no. 7, pp. 848–854, 2003. doi: 10.1109/TBME.2003.813539.
  • I. S. Dhindsa, R. Agarwal, and H. S. Ryait, “Performance evaluation of various classifiers for predicting knee angle from electromyography signals,” Expert Syst., Vol. 36, no. 3, pp. e12381, 2019. doi: 10.1111/exsy.12381.
  • R. Gupta, and R. Agarwal, “sEMG interface design for locomotion identification,” Int. J. Electr. Comput. Eng, Vol. 11, no. 2, pp. 66–75, 2017. doi: 10.1999/1307-6892/10006174.
  • R. Gupta, and R. Agarwal, “Continuous human locomotion identification for lower limb prosthesis control,” CSI Trans. ICT, Vol. 6, no. 1, pp. 17–31, 2018. doi: 10.1007/s40012-017-0178-4.
  • D. A. Winter, “Biomechanical motor patterns in normal walking,” J. Mot. Behav, Vol. 15, no. 4, pp. 302–330, 1983. doi: 10.1080/00222895.1983.10735302.
  • D. A. Winter, “Kinematic and kinetic patterns in human gait: variability and compensating effects,” Hum. Mov. Sci, Vol. 3, pp. 51–76, 1984.
  • D. A. Winter, and H. J. Yack, “EMG profiles during normal human walking: stride-to-stride and inter-subject variability,” Electroencephalogr. Clin. Neurophysiol, Vol. 67, no. 5, pp. 402–411, 1987.
  • D. A. Winter, “Human balance and posture standing and walking control during,” Gait Posture, Vol. 3, no. 4, pp. 193–214, 1995.
  • H. W. A. A. Van De Crommert, T. Mulder, and J. Duysens, “Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training,” Gait Posture, Vol. 7, pp. 251–263, 1998.
  • M. R. Dimitrijevic, I. Persy, C. Forstner, H. Kern, and M. M. Dimitrijevic, “Motor control in the human spinal cord,” Artifical Organs, Vol. 29, no. 3, pp. 216–219, 2005.
  • R. Jimenez-Fabian, and O. Verlinden, “Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons,” Med. Eng. Phys, Vol. 34, no. 4, pp. 397–408, 2012. doi: 10.1016/j.medeng-phy.2011.11.018.
  • P. Geethanjali, “Myoelectric control of prosthetic hands: state-of-the-art review,” Med. Devices Evid. Res, Vol. 9, pp. 247–255, 2016. doi: 10.2147/MDER.S91102.
  • M. Sokolova, and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf. Process. Manag, Vol. 45, no. 4, pp. 427–437, 2009. doi: 10.1016/j.ipm.2009.03.002.
  • J. Zhang, C. Ling, and S. Li, “EMG signals based human action recognition via deep belief networks,” IFAC-PapersOnLine, Vol. 52, no. 19, pp. 271–276, 2019. doi: 10.1016/j.ifacol.2019.12.108.
  • Y. Wang, Q. Wu, N. Dey, S. Fong, and A. S. Ashour, “Deep back propagation–long short-term memory network based upper-limb sEMG signal classification for automated rehabilitation,” Biocybern. Biomed. Eng, Vol. 40, no. 3, pp. 987–1001, 2020. doi: 10.1016/j.bbe.2020.05.003.
  • M. Coskun, O. Yildirim, Y. Demir, and U. R. Acharya, “Efficient deep neural network model for classification of grasp types using sEMG signals,” J. Ambient. Intell. Humaniz. Comput. (2021). doi: 10.1007/s12652-021-03284-9.
  • Y. Wang, C. Wang, Z. Wang, X. Wang, and Y. Li., “Hand gesture recognition using sparse autoencoder-based deep neural network based on electromyography measurements,” 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.