118
Views
0
CrossRef citations to date
0
Altmetric
Computers and Computing

A Deep Learning-Based Model for Link Quality Estimation in Vehicular Networks

, &

References

  • L. Liang, H. Ye, and G. Y. Li, “Toward Intelligent vehicular networks: A Machine Learning framework,” IEEE Internet Things J, Vol. 6, no. 1, pp. 124–135, 2019. doi:10.1109/JIOT.2018.2872122.
  • L. Liang, H. Peng, G. Y. Li, and X. Shen, “Vehicular communications: A physical layer perspective,” IEEE Trans. Veh. Technol, Vol. 66, no. 12, pp. 10647–10659, 2017. doi:10.1109/TVT.2017.2750903.
  • Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn to cache: Machine Learning for network Edge caching in the Big data Era,” IEEE Wirel. Commun, Vol. 25, no. 3, pp. 28–35, 2018. doi:10.1109/MWC.2018.1700317.
  • H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, “Machine Learning for vehicular networks: recent advances and application examples,” IEEE Veh. Technol. Mag, Vol. 13, no. 2, pp. 94–101, 2018. doi:10.1109/MVT.2018.2811185.
  • T. Liu, and A. E. Cerpa, “Temporal adaptive link quality prediction with Online learning,” ACM Trans. Sens. Networks, Vol. 10, no. 3, pp. 1–41, Apr. 2014. doi:10.1145/259-4766.
  • L. Liu, B. Yin, S. Zhang, X. Cao, and Y. Cheng, “Deep learning meets wireless network optimization: identify critical links,” IEEE Trans. Netw. Sci. Eng, Vol. 7, no. 1, pp. 167–180, Jan. 2020. doi:10.1109/TNSE.2018.2827997.
  • Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials, Vol. 20, no. 4, pp. 2595–2621, 2018. doi:10.1109/COMST.2018.2846401.
  • J. Shu, Q. Chen, L. Liu, and L. Xu, “A link prediction approach based on deep learning for opportunistic sensor network,” Int. J. Distrib. Sens. Networks, Vol. 13, no. 4, pp. 155014771770064, Apr. 2017. doi:10.1177/155014771-7700642.
  • M. Zhang, and Y. Chen, “Weisfeiler-lehman neural machine for link prediction,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. Part F1296, 2017,pp. 575–583, doi:10.1145/3097983.3097996.
  • C. Chen, S. Deng, and J. Lu, “Link prediction in author collaboration network based on BP neural network,” in MATEC Web of Conferences, vol. 139, Dec. 2017, doi:10.1051/matecconf/201713900073.
  • G. Cerar, H. Yetgin, M. Mohorčič, and C. Fortuna. “Machine Learning for Link Quality Estimation: A Survey,” pp. 1–29, 2018, [Online]. Available: http://arxiv.org/abs/1812.08856.
  • J. Joo, M. C. Park, D. S. Han, and V. Pejovic, “Deep Learning-Based Channel Prediction in realistic vehicular communications,” IEEE. Access., Vol. 7, 2019. doi:10.1109/ACCESS.2019.2901710.
  • C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, “Channel state information prediction for 5G wireless communications: A deep learning approach,” IEEE Trans. Netw. Sci. Eng, Vol. 7, no. 1, pp. 227–236, 2020. doi:10.1109/TNSE.2018.2848960.
  • T. Zhang, S. Liu, W. Xiang, L. Xu, K. Qin, and X. Yan, “A real-time channel prediction model based on neural networks for dedicated short-range communications,” Sensors (Switzerland), Vol. 19, no. 16, Aug. 2019. doi:10.3390/s19163541.
  • S. I. Popoola, E. Adetiba, A. A. Atayero, N. Faruk, and C. T. Calafate, “Optimal model for path loss predictions using feed-forward neural networks,” Cogent Eng, Vol. 5, no. 1, Feb. 2018. doi:10.1080/23311916.2018.1444345.
  • U. Ghose. “Link Prediction based On Deep Neural Network using SubGraph,” vol. 29, no. 5, pp. 11213–11231, 2020.
  • G. Liu, Y. Xu, Z. He, Y. Rao, J. Xia, and L. Fan, “Deep Learning-Based Channel Prediction for Edge Computing networks toward Intelligent connected vehicles,” IEEE. Access., Vol. 7, pp. 114487–114495, 2019. doi:10.1109/access.2019.2935463.
  • J. D. Herath, A. Seetharam, and A. Ramesh, “A deep learning model for wireless channel quality prediction,” IEEE Int. Conf. Commun, Vol. 2019, no. 1, 2019. doi:10.1109/ICC.2019.8761934.
  • S. Toufga, S. Abdellatif, P. Owezarski, T. Villemur, and D. Relizani, “Effective prediction of V2I link lifetime and vehicle’s next cell for software defined vehicular networks: A Machine Learning approach,” in IEEE Veh. Netw. Conf. VNC, vol. 2019, doi:10.1109/VNC48660.2019.9062803.
  • S. Pahal, B. Singh, and A. Arora, “A prediction based handover trigger in overlapped heterogeneous wireless networks,” in 2013 IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2013, pp. 1–6, 2013, doi:10.1109/ISPCC.2013.6663418.
  • J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang, “Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach,” in IEEE INFOCOM 2017-IEEE Conf. Comput. Commun, 2017.
  • J. Wang, X. Zhang, Q. Gao, H. Yue, and H. Wang. “Device-free wireless localization and activity recognition: A deep learning approach,” ieeexplore.ieee.org, Accessed: Dec. 28, 2020. 2016, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7765094/.
  • N. Alam, A. T. Balaie, and A. G. Dempster, “Dynamic path loss exponent and distance estimation in a vehicular network using Doppler effect and received signal strength,” in IEEE Veh. Technol. Conf., 2010, doi:10.1109/VETECF.2010.5594457.
  • R. Meireles, M. Boban, P. Steenkiste, O. Tonguz, and J. Barros, “Experimental study on the impact of vehicular obstructions in VANETs,” in 2010 IEEE Veh. Netw. Conf. VNC 2010, 2010, pp. 338–345, doi:10.1109/VNC.2010.5698233.
  • J. Maurer, T. Fügen, and W. Wiesbeck, “Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz,” IEEE Veh. Technol. Conf, Vol. 3, pp. 1274–1278, 2002. doi:10.1109/VTC.2002.1002820.
  • H. N. Mahjoub, A. Tahmasbi-sarvestani, S. Mohammed, O. Gani, and Y. P. Fallah, “Composite α − μ based DSRC channel model using large data Set of RSSI Measurements,” IEEE Trans. Intell. Transp. Syst, Vol. 20, no. 1, pp. 205–217, 2019.
  • B. Yegnanarayana. Artificial neural networks. New Delhi: PHI Learning Pvt. Ltd., 2009.
  • R. Parasuraman, S. Caccamo, F. Baberg, and P. Ogren. “CRAWDAD dataset kth/rss (v. 2016-01-05).” 2016, doi:10.15783/C7088F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.