139
Views
0
CrossRef citations to date
0
Altmetric
Electronic Circuits, Devices and Components

A Flexible Digitally Controlled Oscillator Structure to Reconfigure the Frequency Band in Multi-band RF AD-PLL System

&

REFERENCES

  • M. Rais-Zadeh, J. T. Fox, D. D. Wentzloff, and Y. B. Gianchandani, “Reconfigurable radios: a possible solution to reduce entry costs in wireless phones,” Proc. IEEE, Vol. 103, no. 3, pp. 438–451, 2015.
  • R. G. Machado, and A. M. Wyglinski, “Software-defined radio: bridging the analog–digital divide,” Proc. IEEE, Vol. 103, no. 3, pp. 409–423, 2015.
  • Y. Huang, C. Liang, H. Huang, and P. Wang, “15.3 a 2.4 GHz ADPLL with digital-regulated supply-noise-insensitive and temperature-self-compensated ring DCO,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 270–271.
  • X. Peng, J. Yin, P.-I. Mak, W.-H. Yu, and R. P. Martins, “A 2.4-GHz Zig Bee transmitter using a function-reuse class-F DCO-PA and an ADPLL achieving 22.6% (14.5%) system efficiency at 6-dBm (0-dBm) Pout,” IEEE J. Solid-State Circuits, Vol. 52, no. 6, pp. 1495–1508, 2017.
  • S. Liu, and Y. Zheng, “A fractional-N counter-assisted DPLL with parallel sampling ILFD,” IEEE J. Solid-State Circuits, Vol. 51, no. 6, pp. 1361–1373, 2016.
  • T. Seong, Y. Lee, S. Yoo, and J. Choi, “A 320-fs RMS jitter and – 75-dBc reference-Spur ring-DCO-based digital PLL using an optimal-threshold TDC,” IEEE J. Solid-State Circuits, Vol. 54, no. 9, pp. 2501–2512, 2019.
  • I. L. Syllaios, R. B. Staszewski, and P. T. Balsara, “Time-domain modeling of an RF all-digital PLL,” IEEE Trans. Circuits Syst. Express Briefs, Vol. 55, no. 6, pp. 601–605, 2008.
  • Z. Huang, and H. C. Luong, “Design and analysis of millimeter-wave digitally controlled oscillators with C-2C exponentially scaling switched-capacitor ladder,” IEEE Trans. Circuits Syst. Regul. Pap., Vol. 64, no. 6, pp. 1299–1307, 2017.
  • F. Haddad, H. Barthélemy, I. Ghorbel, M. Loulou, W. Rahajandraibe, and H. Mnif, “Digitally controlled oscillator using active inductor based on CMOS inverters,” Electron. Lett., Vol. 50, no. 22, pp. 1572–1574, 2014.
  • Y. Zhang, W. Rhee, T. Kim, H. Park, and Z. Wang, “A 0.35–0.5-V 18–152 MHz digitally controlled relaxation oscillator with adaptive threshold calibration in 65-nm CMOS,” IEEE Trans. Circuits Syst. Express Briefs, Vol. 62, no. 8, pp. 736–740, 2015.
  • M.-C. Su, S.-J. Jou, and W.-Z. Chen, “A low-jitter cell-based digitally controlled oscillator with differential multiphase outputs,” IEEE Trans. Very Large Scale Integr. VLSI Syst., Vol. 23, no. 4, pp. 766–770, 2015.
  • J. Zhuang, K. Waheed, and R. B. Staszewski, “Design of spur-free ∑Δ frequency tuning interface for digitally controlled oscillators,” IEEE Trans. Circuits Syst. Express Briefs, Vol. 62, no. 1, pp. 46–50, 2015.
  • I. Bashir, R. B. Staszewski, and P. T. Balsara, “A digitally controlled injection-locked oscillator with fine frequency resolution,” IEEE J. Solid-State Circuits, Vol. 51, no. 6, pp. 1347–1360, 2016.
  • C. Wang, K. Zhao, Q. Guo, and Z. Li, “Efficient self-powered convertor with digitally controlled oscillator-based adaptive maximum power point tracking and RF kick-start for ultralow-voltage thermoelectric energy harvesting,” IET Circuits Devices Syst., Vol. 10, no. 2, pp. 147–155, 2016.
  • S. Adithya, and M. Sridharan, “A wide tunable fast settling 4-bit digitally controlled oscillator for reconfigurable multi-band RF applications,” Microelectron. J., Vol. 92, pp. 104608, 2019.
  • R. B. Staszewski, C.-M. Hung, D. Leipold, and P. T. Balsara, “A first multigigahertz digitally controlled oscillator for wireless applications,” IEEE Trans. Microwave Theory Tech., Vol. 51, no. 11, pp. 2154–2164, 2003.
  • U. L. Rohde, A. K. Poddar, J. Schoepf, R. Rebel, and P. Patel, “Low noise low cost wideband N-push VCO,” in International Microwave Symposium Digest, 2005 IEEE MTT-S, USA, June 12–17, 2005, pp. 0–4.
  • U. L. Rohde, and A. K. Poddar, “Concurrent, reconfigurable and adaptable oscillators for multi-band multi-mode communication systems,” in European Microwave Conference, EUMC 2007, Munich, Oct. 9–12, 2007, pp. 1050–1053.
  • U. L. Rohde, and A. K. Poddar, “Low cost configurable RF signal source for wireless applications,” in European Microwave Conference, EuMC 2007, Munich, Oct. 8–10, 2007, pp. 508–511.
  • A. Poddar, U. Rohde, and A. Apte, “How low can they go, oscillator phase noise model, theoretical, experimental validation, and phase noise measurements,” IEEE Microwave Mag., Vol. 14, no. 6, pp. 50–72, September/October 2013.
  • U. Rohde, A. Poddar, and A. Apte, “Getting its measure: oscillator phase noise measurement techniques and limitations,” IEEE Microwave Mag., Vol. 14, no. 6, pp. 73–86, September/October 2013.
  • L.-H. Lu, H.-H. Hsieh, and Y.-T. Liao, “A wide tuning-range CMOS VCO with a differential tunable active inductor,” IEEE Trans. Microwave Theory Tech., Vol. 54, no. 9, pp. 3462–3468, 2006.
  • S.-Y. Seo, J.-H. Chun, Y.-H. Jun, S. Kim, and K.-W. Kwon, “A digitally controlled oscillator with wide frequency range and low supply sensitivity,” IEEE Trans. Circuits Syst. Express Briefs, Vol. 58, no. 10, pp. 632–636, 2011.
  • J.-Y. Foo, and R. J. Weber, “Low power 5GHz quadrature phase CMOS LC oscillator with active inductor,” in IEEE International Symposium on Communications and Information Technology, 2004, ISCIT 2004, IEEE, 2004, pp. 1084–1089.
  • R. Mukhopadhyay, et al., “Reconfigurable RFICs in Si-based technologies for a compact intelligent RF front-end,” IEEE Trans. Microwave Theory Tech., Vol. 53, no. 1, pp. 81–93, 2005.
  • J. Jin, “Low power current-mode voltage controlled oscillator for 2.4GHz wireless applications,” Comput. Electr. Eng., Vol. 40, no. 1, pp. 92–99, 2014.
  • R. Mehra, V. Kumar, and A. Islam, “Floating active inductor based class-C VCO with 8 digitally tuned sub-bands,” AEU – Int. J. Electron. Commun., Vol. 83, pp. 1–10, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.