177
Views
0
CrossRef citations to date
0
Altmetric
Medical Electronics

Development of Robotic Rehabilitation Device for Spasticity Treatment of Acute Spinal Cord Injury Patients

ORCID Icon, , , , &

References

  • “Spinal cord injury.” Available: https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury#:~: text = Keyfacts,traffic crashes%2C falls or violence.
  • C. J. L. Murray, and A. Lopez, “A comprehensive assessment of mortality and disability from disease, injures and risk factors in 1990 and projected to 2020,” in The Global Burden of Disease, 1996. Available: https://www.who.int/healthinfo/global_burden_disease/GlobalDALYmethods_2000_2015.pdf.
  • P. Bose, J. Hou, and F. J. Thompson. Traumatic Brain Injury (TBI)-Induced Spasticity: Neurobiology, Treatment, and Rehabilitation. Boca Raton, FL: CRC Press / Taylor & Francis, 2015, ch. 14.
  • N.S.S. Center. Available: www.nscisc.uab.edu/Public/Facts%20and%20Figures%20-%202018.pdf.
  • J. W. Lance, “What is spasticity?,” The Lancet, Vol. 335, pp. 606, 1990.
  • K. Stuke, et al., “Symptomatology of MS: results from the German MS registry,” J. Neurology, Vol. 256, pp. 11, July 2009.
  • M. A. Rizzo, O. C. Hadjimichael, J. Preiningerova, and T. L. Vollmer, “Prevalence and treatment of spasticity reported by multiple sclerosis patients,” Mult. Scler. J., Vol. 10, pp. 589–95, 2004.
  • P. Flachenecker, T. Henze, and U. K. Zettl, “Spasticity in patients with multiple sclerosis – clinical characteristics, treatment and quality of life,” Acta Neurol. Scand., Vol. 129, pp. 154–62, 2014.
  • G. S. Sawicki, and D. P. Ferris, “A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition,” J. Neuroeng. Rehabil., Vol. 6, pp. 6–23, Jul. 2009.
  • S. Rossi, F. Patane, F. Del Sette, and P. Cappa, “WAKE-up: A wearable ankle knee exoskeleton,” in 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, Aug. 12–15, 2014, pp. 504–7.
  • K. Bharadwaj, and T. G. Sugar, “Kinematics of a robotic gait trainer for stroke rehabilitation," in Proceedings – IEEE International Conference on Robotics and Automation, Orlando, FL, USA, May 15–19, 2006, pp. 3492–7.
  • S. Hwang, J. Kim, J. Yi, K. Tae, K. Ryu, and Y. Kim, “Development of an active ankle foot orthosis for the prevention of foot drop and toe drag,” in Proceedings of the 2006 International Conference on Biomedical and Pharmaceutical Engineering, Singapore, Dec. 11–14, 2006, pp. 418–23.
  • P. K. Jamwal, S. Q. Xie, S. Hussain, and J. G. Parsons, “An adaptive wearable parallel robot for the treatment of ankle injuries,” IEEE/ASME Trans. Mech., Vol. 19, pp. 64–75, 2014.
  • J. Kim, S. Hwang, R. Sohn, Y. Lee, and Y. Kim, “Development of an active ankle foot orthosis to prevent foot drop and toe drag in hemiplegic patients: a preliminary study,” Appl. Bionics. Biomech., Vol. 8, pp. 377–84, 2011.
  • K. E. Gordon, G. S. Sawicki, and D. P. Ferris, “Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis,” J. Biomech., Vol. 39, pp. 1832–41, 2006.
  • S. V. Dhule, V. V. Shete, and S. B. Somani, “Implementation of adaptive dorsiflexion and plantar flexion in active ankle foot orthosis," in Proceedings – IEEE International Conference on Information Processing, Pune, India, Dec. 16–19, 2015, pp. 714–8.
  • D. Pradon, E. Hutin, S. Khadir, R. Taiar, F. Genet, and N. Roche, “A pilot study to investigate the combined use of botulinum toxin type-a and ankle foot orthosis for the treatment of spastic foot in chronic hemiplegic patients,” Clin. Biomech., Vol. 26, pp. 867–72, 2011.
  • J. A. Blaya, and H. Herr, “Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 12, pp. 24–31, 2004.
  • T. Kobayashi, M. S. Orendurff, M. L. Singer, F. Gao, and K. B. Foreman, “Contribution of ankle-foot orthosis moment in regulating ankle and knee motions during gait in individuals post-stroke,” Clin. Biomech., Vol. 45, pp. 9–13, 2017.
  • S. Shrivastava, R. K. R. Prabhu, R. Kirubakaran, J. Thomasraj, and B. Sundaram, “Ankle foot orthosis for walking in stroke rehabilitation,” Cochrane Database Syst. Rev., Vol. 8, pp. 1465–858, August 2014.
  • W. E. Clark, M. Sivan, and R. J. O’Connor, “Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review,” J. Rehabil. Assist. Technol. Eng., Vol. 6, pp. 1–7, 2019.
  • S. Masiero, A. Celia, G. Rosati, and M. Armani, “Robotic-assisted rehabilitation of the upper limb after acute stroke,” Arch. Phys. Med. Rehabil., Vol. 88, pp. 142–9, 2007.
  • B. T. Volpe, M. Ferraro, H. I. Krebs, and N. Hogan, “Robotics in the rehabilitation treatment of patients with stroke,” Curr. Atheroscler. Rep., Vol. 4, pp. 270–6, 2002.
  • A. S. Gorgey, R. Sumrell, and L. L. Goetz. Atlas Orthoses Assistive Devices, 5th ed. Elsevier, 2019.
  • P. Dario, E. Guglielmelli, V. Genovese, and M. Toro, “Robot assistants: Applications and evolution,” Rob. Auton. Syst., Vol. 18, pp. 225–34, 1996.
  • L. Leifer, G. Toye, and M. Van Der Loos, “Tele-service-robot: Integrating the socio-technical framework of human service through the InterNet-world-wide-web,” Rob. Auton. Syst., Vol. 18, pp. 117–26, 1996.
  • N. Aliman, R. Ramli, and S. M. M. Haris, “Design and development of lower limb exoskeletons: A survey,” Rob. Auton. Syst., Vol. 95, pp. 102–16, 2017.
  • F. Tamburella, et al., “Boosting the traditional physiotherapist approach for stroke spasticity using a sensorized ankle foot orthosis: A pilot study,” Top. Stroke Rehabil., Vol. 24, pp. 447–56, 2017.
  • G. Waldman, et al., “Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke,” NeuroRehabilitation, Vol. 32, pp. 625–34, 2013.
  • D. Shakti, L. Mathew, N. Kumar, and C. Kataria, “Effectiveness of robo-assisted lower limb rehabilitation for spastic patients: A systematic review,” Biosensensors Bioelectron., Vol. 117, pp. 403–15, 2018.
  • P. Beckerle, et al., “A human-robot interaction perspective on assistive and rehabilitation robotics,” Front. Neurorobot., Vol. 11, pp. 1–6, May 2017.
  • C. Vér, et al., “The effect of passive movement for paretic ankle-foot and brain activity in post-stroke patients,” Eur. Neurol., Vol. 76, no. 3–4, pp. 132–42, June 2016.
  • S. Soman, D. Jayadeva, S. Arjunan, and D. K. Kumar, “Improved sEMG signal classification using the twin SVM,” in IEEE International Conference Systems Man, Cybernatics SMC 2016 – Conference Proceedings, Budapest, Hungary, Oct. 9–12, 2016, pp. 4507–12.
  • N. Hooda, R. Das, and N. Kumar, “Fusion of EEG and EMG signals for classification of unilateral foot movements,” Biomed. Signal. Process. Control., Vol. 60, pp. 101990, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.