157
Views
25
CrossRef citations to date
0
Altmetric
Medical Electronics

FrWT-PPCA-Based R-peak Detection for Improved Management of Healthcare System

, &

References

  • M. Elgendi, B. Eskofier, S. Dokos, and D. Abbott, “Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems,” PLoS ONE, Vol. 9, no. 1, pp. e84018, 2014. DOI:10.1371/journal.pone.0084018
  • D. C. Rufas, and J. Carrabina, “Simple real-time QRS detector with the MaMeMi filter,” Biomed. Signal. Process. Control., Vol. 21, pp. 137–45, 2015. DOI:10.1016/j.bspc.2015.06.001
  • B. Vaes, S. Stalpaert, K. Tavernier, B. Thaels, D. Lapeire, W. Mullens, and J. Degryse, “The diagnostic accuracy of the MyDiagnostick to detect atrial fibrillation in primary care,” BMC Family Pract., Vol. 15, no. 113, 2014. DOI:10.1186/1471-2296-15-113
  • G. Bhatnagar, Q. M. J. Wua, and B. Raman, “Discrete fractional wavelet transform and its application to multiple encryption,” Inf. Sci., Vol. 223, pp. 297–316, Feb. 2013. DOI:10.1016/j.ins.2012.09.053
  • M. Elgendi, M. Jonkman, and F. D. Boer, “Improved QRS detection algorithm using dynamic thresholds,” Int. J. Hybrid Inf. Technol., Vol. 2, no. 1, pp. 65–80, Jan. 2009. https://www.researchgate.net/publication/237144291_Improved_QRS_Detection_Algorithm_using_Dynamic_Thresholds
  • A. Kaur, A. Agarwal, R. Agarwal, and S. Kumar, “A novel approach to ECG R-peak detection,” Arab. J. Sci. Eng., DOI:10.1007/s13369-018-3557-8.
  • M. Elgendi, “Fast QRS detection with an optimized knowledge-based method: Evaluation on 11 standard ECG databases,” PLoS ONE, Vol. 8, no. 9, pp. e73557, 2013. DOI:10.1371/journal.pone.0073557
  • V. Gupta, and M. Mittal, “QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases,” J. Inst. Eng. (India): Ser. B, Springer 2019. DOI:10.1007/s40031-019-00398-9.
  • M. Elgendi, A. Mohamed, and R. Ward, “Efficient ECG compression and QRS detection for E-health applications,” Sci. Rep., Vol. 7, pp. 459, 2017. DOI:10.1038/s41598-017-00540-x
  • M. Elgendi, S. Mahalingam, M. Jonkman, and F. D. Boer, “A robust QRS complex detection algorithm using dynamic thresholds,” Int. Symp. Comput. Sci. Appl., 153–8, 2008. DOI:10.1109/CSA.2008.16
  • H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay. The fractional Fourier transform with applications in optics and signal processing. New York: Wiley, 2000.
  • L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process., Vol. 42, pp. 3084–91, 1994. DOI:10.1109/78.330368
  • D. Mendlovic, Z. Zalevsky, D. Mas, J. Garcia, and C. Ferreira, “Fractional wavelet transform,” Appl. Opt., Vol. 36, pp. 4801–6, 1997. DOI:10.1364/AO.36.004801
  • J. Shi, N. T. Zhang, and X. P. Liu, “A novel fractional wavelet transform and its applications,” Sci. China Inf. Sci, Vol. 55, no. 6, pp. 1270–9, 2011. DOI:10.1007/s11432-011-4320-x
  • V. Gupta, and M. Mittal, “Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis,” J. Inst. Eng. (India): Ser. B, Springer 2020. DOI:10.1007/s40031-020-00488-z.
  • X. G. Xia, “Discrete chirp-Fourier transform and its application to chirp rate estimation,” IEEE Trans. Signal Process., Vol. 48, pp. 3122–33, 2000. DOI:10.1109/78.875469
  • K. O. O. Anoh, R. A. Abd-Alhameed, S. M. R. Jones, O. Ochonogor, and Y. A. S. Dama, “Novel fractional wavelet transform with closed-form expression,” Int. J. Adv. Comput. Sci. Appl., Vol. 5, no. 1, pp. 182–7, 2014. DOI:10.14569/IJACSA.2014.050126
  • A. Sharma, S. Saxena, and P. Rai, “A flexible probabilistic framework for large-margin mixture of experts,” Mach. Learn., Vol. 108, pp. 1369–93, 2019. DOI:10.1007/s10994-019-05811-4
  • G. Nyamundanda, L. Brennan, and I. C. Gormley, “Probabilistic principal component analysis for metabolomic data,” BMC Bioinf., Vol. 11, pp. 571, 2010. DOI:10.1186/1471-2105-11-571
  • B. Vishwanath, R. V. Pujeri, and G. Devanagavi, “Probabilistic principal component analysis-based dimensionality reduction and optimization for arrhythmia classification using ECG signals,” Bio-Algorithms Med-Syst., Vol. 15, pp. 1–18, 2019. DOI:10.1515/bams-2018-0037
  • N. V. Thakor, J. G. Webster, and W. J. Tompkins, “Estimation of QRS complex power spectra for design of a QRS filter,” IEEE Trans. Biomed. Eng., Vol. BME-31, no. 11, pp. 702–6, Nov. 1986. DOI:10.1109/TBME.1984.325393
  • T. Sharma, and K. K. Sharma, “QRS complex detection in ECG signals using locally adaptive weighted total variation denoising,” Comput. Biol. Med., Vol. 87, pp. 187–99, 2017. DOI:10.1016/j.compbiomed.2017.05.027
  • P. Phukpattaranont, “QRS detection algorithm based on the quadratic filter,” Expert Syst. Appl., Vol. 42, no. 11, pp. 4867–77, 2015. DOI:10.1016/j.eswa.2015.02.012
  • A. Kaur, S. Kumar, A. Agarwal, and R. Agarwal, “An efficient R-peak detection using Riesz fractional-order digital differentiator,” Circ. Syst. Sig. Proc., Vol. 39, pp. 1965–87, 2020. DOI:10.1007/s00034-019-01238-3
  • V. Gupta, M. Mittal, and V. Mittal, “R-Peak detection using chaos analysis in standard and real time ECG databases,” IRBM, Vol. 40, no. 6, pp. 341–54, 2019. DOI:10.1016/j.irbm.2019.10.001
  • A. Sheetal, H. Singh, and A. Kaur, “QRS detection of ECG signal using hybrid derivative and MaMeMi filter by effectively eliminating the baseline wander,” Analog Integr. Circ. Sig. Process, Vol. 98, no. 1, pp. 1–9, 2019. DOI:10.1007/s10470-018-1249-7
  • A. A. Fedotov, “Selection of parameters of bandpass filtering of the ECG signal for heart rhythm monitoring systems,” Biomed. Eng., Vol. 50, no. 2, pp. 114118, Jul. 2016. Translated from Meditsinskaya Tekhnika, Vol. 50, No. 2, Mar.–Apr., 2016, pp. 29–32. DOI:10.1007/s10527-016-9600-8
  • V. Gupta, M. Mittal, and V. Mittal, “R-peak detection based chaos analysis of ECG signal,” Analog. Integr. Circuits. Signal. Process. 2019. DOI:10.1007/s10470-019-01556-1.
  • D. Strong, and T. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” Inverse Prob., Vol. 19, no. 6, pp. S165–87, 2003. DOI:10.1088/0266-5611/19/6/059
  • H. A. N. Dinh, D. K. Kumar, N. D. Pah, and P. Burton, “Wavelets for QRS detection,” Australas. Phys. Eng. Sci. Med., Vol. 24, no. 4, pp. 207–11, 2001. DOI:10.1007/BF03178366
  • B. Fatimah, P. Singh, A. Singhal, and R. B. Pachori, “Detection of apnea events from ECG segments using Fourier decomposition method,” Biomed. Signal. Process. Control., Vol. 61, pp. 102005, 2020. DOI:10.1016/j.bspc.2020.102005
  • P. Singh, “Novel generalized Fourier representations and phase transforms,” Digit. Signal. Process., Vol. 106, pp. 102830, 2020. DOI:10.1016/j.dsp.2020.102830
  • C. H. Lin, “Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier,” Comput. Math. Appl., Vol. 55, pp. 680–90, 2008. DOI:10.1016/j.camwa.2007.04.035
  • R. Haberl, G. Jilge, R. Pulter, and G. Steinbeck, “Spectral mapping of the electrocardiogram with Fourier transform for identification of patients with sustained ventricular tachycardia and coronary artery disease,” Eur. Heart J., Vol. 10, pp. 316–22, 1989. DOI:10.1093/oxfordjournals.eurheartj.a059488
  • V. Gupta, M. Mittal, and V. Mittal, “Chaos theory: An emerging tool for arrhythmia detection,” Sens. Imaging., Vol. 21, no. 10, 2020. DOI:10.1007/s11220-020-0272-9.
  • M. Rakshit, and S. Das, “An efficient wavelet-based automated R-peaks detection method using Hilbert transform,” Biocybern. Biomed. Eng., Vol. 37, pp. 566–77, 2017. DOI:10.1016/j.bbe.2017.02.002
  • M. Das, and S. Ari, “Analysis of ECG signal denoising method based on S-transform,” IRBM, Vol. 34, no. 6, pp. 362–70, Dec. 2013. DOI:10.1016/j.irbm.2013.07.012
  • V. Bajaj, and R. B. Pachori, “Classification of seizure and nonseizure EEG signals using empirical mode decomposition,” IEEE Trans. Inf. Technol. Biomed., Vol. 16, no. 6, pp. 1135–42, Nov. 2012. DOI:10.1109/TITB.2011.2181403
  • A. Bhattacharyya, and R. B. Pachori, “A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform,” IEEE Trans. Biomed. Eng., Vol. 64, no. 9, pp. 2003–15, Sep. 2017. DOI:10.1109/TBME.2017.2650259
  • C. Nayak, S. K. Saha, R. Kar, and D. Mandal, “An optimally designed digital differentiator based preprocessor for R-peak detection in electrocardiogram signal,” Biomed. Signal. Process. Control., Vol. 49, pp. 440–64, Mar. 2019. DOI:10.1016/j.bspc.2018.09.005
  • Y. Xiang, Z. Lin, and J. Meng, “Automatic QRS complex detection using two–level convolutional neural network,” Biomed. Eng. Online, Vol. 17, pp. 13, 2018. DOI:10.1186/s12938-018-0441-4
  • S. Madhavan, R. K. Tripathy, and R. B. Pachori, “Time-frequency domain deep convolutional neural network for the classification of focal and non-focal EEG signals,” IEEE Sensors J., Vol. 20, no. 6, pp. 3078–86, Mar. 2020. DOI:10.1109/JSEN.2019.2956072
  • V. Gupta, “Attractor plot as an emerging tool in ECG signal processing for improved health informatics,” in International Conference on Future Technologies 2020 (ICOFT 2020) in Manufacturing, Automation, Design and Energy (MADE@NITPY), National Institute of Technology Puducherry Karaikal, India, Dec. 28–30, 2020.
  • V. Gupta, et al., “Spectrogram as an emerging tool in ECG signal processing,” in International Conference on Future Technologies 2020 (ICOFT 2020) in Manufacturing, Automation, Design and Energy (MADE@NITPY), National Institute of Technology Puducherry Karaikal, India, Dec. 28–30, 2020.
  • R. Sharma, R. B. Pachori, and P. Sircar, “Automated emotion recognition based on higher order statistics and deep learning algorithm,” Biomed. Signal. Process. Control., Vol. 58, pp. 101867, 2020. DOI:10.1016/j.bspc.2020.101867
  • G. B. Moody, and R. G. Mark, “The impact of the MIT-BIH arrhythmia database,” IEEE Eng Med Biol, Vol. 20, no. 3, pp. 45–50, May–Jun. 2001. (PMID: 11446209). DOI:10.1109/51.932724
  • Ventricular Tachyarrhythmia database. Beecardia – Physiobank – Creighton University Ventricular Tachyarrhythmia. Accessed on 27 Feb. 2019.
  • G. B. Moody, “Spontaneous termination of atrial fibrillation: A challenge from PhysioNet and computers in cardiology 2004,” Comput. Cardiol., Vol. 31, pp. 101–4, 2004. DOI:10.1109/CIC.2004.1442881
  • A. L. Goldberger, et al., “Physiobank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” Circulation [Online], Vol. 101, no. 23, pp. e215–20, 2000. DOI:10.1161/01.cir.101.23.e215
  • C. C. Lin, H. Y. Chang, Y. H. Huang, and C. Y. Yeh, “A novel wavelet-based algorithm for detection of QRS complex,” Appl. Sci., Vol. 9, pp. 2142, 2019. DOI:10.3390/app9102142
  • R. He, K. Wang, Q. Li, Y. Yuan, N. Zhao, Y. Liu, and H. Zhang, “A novel method for the detection of R-peaks in ECG based on K-nearest neighbors and particle swarm optimization,” EURASIP J. Adv. Signal Process., Vol. 2017, pp. 82, 2017. DOI:10.1186/s13634-017-0519-3
  • V. Gupta, and M. Mittal, “R-Peak detection in ECG signal using yule–walker and principal component analysis,” IETE J. Res. Feb. 2019. DOI:10.1080/03772063.2019.1575292.
  • V. Gupta, M. Mittal, and V. Mittal, “An efficient low computational cost method of R-peak detection,” Wirel. Pers. Commun., Vol. 118, 2020. DOI:10.1007/s11277-020-08017-3.
  • H. Dai, Z. Zheng, and W. Wang, “A new fractional wavelet transform,” Commun. Nonlinear Sci. Numer. Simulat., Vol. 44, pp. 19–36, 2017. DOI:10.1016/j.cnsns.2016.06.034
  • V. A. Narayanana, and K. M. M. Prabhu, “The fractional Fourier transform: theory, implementation and error analysis,” J. Micropr. Microsys., Vol. 27, no. 10, pp. 511–21, Nov. 2003. DOI:10.1016/S0141-9331(03)00113-3
  • E. Alickovic, and A. Subasi, “Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases circuits,” Syst. Signal Process., Vol. 34, no. 2, pp. 513–33, 2015. DOI:10.1007/s00034-014-9864-8
  • M. E. Tipping, and C. M. Bishop. “Probabilistic principal component analysis,” Microsoft Research St George House 1 Guildhall Street Cambridge CB2 3NH United Kingdom, Sep. 1999.
  • B. D. Ripley. Pattern recognition and neural networks. Cambridge: Cambridge University Press, 1996.
  • R. J. A. Little, and D. B. Rubin. Statistical analysis with missing data. Chichester: Wiley, 1987.
  • M. Elgendi, M. Meo, and D. Abbott, “A proof-of-concept study: Simple and effective detection of P and T waves in arrhythmic ECG signals,” Bioengineering, Vol. 3, pp. 26, 2016. DOI:10.3390/bioengineering3040026
  • X. Lu, M. Pan, and Y. Yu, “QRS detection based on improved adaptive threshold,” Hindawi J. Healthcare Eng., Vol. 2018, pp. 8, 2018. DOI:10.1155/2018/5694595.
  • Z. Zidelmal, A. Amirou, M. Adnane, and A. Belouchrani, “QRS detection based on wavelet coefficients,” Comput. Methods Programs Biomed., Vol. 107, no. 3, pp. 490–6, 2012. DOI:10.1016/j.cmpb.2011.12.004
  • J. Pan, and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans. Biomed. Eng., Vol. 32, no. 3, pp. 230–6, 1985. DOI:10.1109/TBME.1985.325532
  • S. W. Chen, H. C. Chen, and H.-L. Chan, “A real-time qrs detection method based on moving-averaging incorporating with wavelet denoising,” Comput. Methods Prog. Biomed., Vol. 82, pp. 187–95, 2006. DOI:10.1016/j.cmpb.2005.11.012
  • N. M. Arzeno, Z. D. Deng, and C. S. Poon, “Analysis of first-derivative based qrs detection algorithms,” IEEE Trans. Biomed. Eng., Vol. 55, pp. 478–84, 2008. DOI:10.1109/TBME.2007.912658
  • R. S. Singh, B. S. Saini, and R. K. Sunkaria, “Arrhythmia detection based on time–frequency features of heart rate variability and back-propagation neural network,” Iran J. Comput. Sci. 2019. DOI:10.1007/s42044-019-00042-1.
  • V. Gupta, M. Mittal, V. Mittal, and A. Gupta, “ECG signal analysis using CWT, spectrogram and autoregressive technique,” Iran J. Comput. Sci. 2021. DOI:10.1007/s22077-021-00071-1.
  • J. S. Park, S. W. Lee, and U. Park, “R peak detection method using wavelet transform and modifed shannon energy envelope,” J. Healthc. Eng., Vol. 17, pp. 1–14, 2017. DOI:10.1155/2017/4901017
  • Y. Kaya, and H. Pehlivan, “Classifcation of premature ventricular contraction in ECG,” Int. J. Adv. Comput. Sci. Appl., Vol. 6, no. 7, pp. 34–40, 2015. DOI:10.14569/IJACSA.2015.060706
  • T. Nguyen, X. Qin, A. Dinh, and F. Bui, “Low resource complexity R-peak detection based on triangle template matching and moving average flter,” Sensors, Vol. 19, no. 18, pp. 1–17, 2019. DOI:10.1109/JSEN.2019.2920795
  • Q. Qin, J. Li, Y. Yue, and C. Liu, “An adaptive and time-efficient ECG R-peak detection algorithm,” J. Healthc. Eng., Vol. 17, pp. 1–14, 2017. DOI:10.1155/2017/5980541
  • I. I. Christov, “Real time electrocardiogram QRS detection using combined adaptive threshold,” BioMed. Eng. OnLine, Vol. 28, no. 3, 2004. http://www.biomedical-engineering-online.com/content/3/1/28
  • P. Sabherwal, M. Agrawal, and L. Singh, “Automatic detection of the R peaks in single-lead ECG signal,” Circuits Syst. Signal Process., Vol. 36, no. 11, pp. 4637–52, 2017. DOI:10.1007/s00034-017-0537-2
  • F. Bouaziz, D. Boutana, and M. Benidir, “Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies,” IET Signal Proc., Vol. 8, no. 7, pp. 774–82, 2014. DOI:10.1049/iet-spr.2013.0391
  • C. Nayak, S. K. Saha, R. Kar, and D. Mandal, “Optimal SSA based wideband digital differentiator design for cardiac QRS complex detection application,” Int. J. Numer. Model, Vol. 32, no. 2, pp. 1–25, 2018. DOI:10.1002/jnm.2524
  • Z. E. H. Slimane, and A. N. Ali, “QRS complex detection using empirical mode decomposition,” Dig. Sig. Proc., Vol. 20, no. 4, pp. 1221–8, 2010. DOI:10.1016/j.dsp.2009.10.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.