481
Views
5
CrossRef citations to date
0
Altmetric
Communications

Deep Learning Techniques for OFDM Systems

, &

References

  • M. H. Alsharif and R. Nordin, “Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells,” Telecommun. Syst., Vol. 64, pp. 617–637, 2017.
  • S. Ali, M. Rahman, D. Hossain, S. Islam, and M. Islam, “Simulation and bit error rate performance analysis of 4G OFDM systems,” in 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 2008, pp. 138-143.
  • M. Singh and S. K. Patra, “On the PTS optimization using the firefly algorithm for PAPR reduction in OFDM systems,” IETE Tech. Rev., Vol. 35, no. 5, pp. 441–455, 2018.
  • M. Akurati, Y. Kamatham, S. K. Pentamsetty, and S. Prasad Kodati, “PAPR reduction in OFDM using hybrid companding for 5G wireless communications,” in 2019 Global Conference for Advancement in Technology (GCAT), Bangalore, India.
  • S. Pouyanfar, et al., “A survey on deep learning: Algorithms, techniques, and applications,” ACM. Comput. Surv., Vol. 51, no. 5, pp. 92:1–92:36, 2018.
  • O. Simeone, “A very brief introduction to machine learning with applications to communication systems,” IEEE Trans. Cogn. Commun. Netw., Vol. 4, no. 4, pp. 648–664, 2018.
  • H. Ye, G. Y. Li, and B. Juang, “Power of deep learning for channel estimation and signal detection in OFDM systems,” IEEE Wirel. Commun. Lett., Vol. 7, no. 1, pp. 114–117, 2018.
  • T. V. Luong, Y. Ko, N. A. Vien, D. H. N. Nguyen, and M. Matthaiou, “Deep learning-based detector for OFDM-IM,” IEEE Wirel. Commun. Lett., Vol. 8, no. 4, pp. 1159–1162, 2019.
  • X. Gao, S. Jin, C. Wen, and G. Y. Li, “Comnet: Combination of deep learning and expert knowledge in OFDM receivers,” IEEE Commun. Lett., Vol. 22, no. 12, pp. 2627–2630, 2018.
  • I. Sohn, “A low complexity PAPR reduction scheme for OFDM systems via neural networks,” IEEE Commun. Lett., Vol. 18, no. 2, pp. 225–228, 2014.
  • I. Sohn and S. C. Kim, “Neural network based simplified clipping and filtering technique for PAPR reduction of OFDM signals,” IEEE Commun. Lett., Vol. 19, no. 8, pp. 1438–1441, 2015.
  • M. Kim, W. Lee, and D. Cho, “A novel PAPR reduction scheme for OFDM system based on deep learning,” IEEE Commun. Lett., Vol. 22, no. 3, pp. 510–513, 2018.
  • E. Balevi and J. G. Andrews, “One-bit OFDM receivers via deep learning,” IEEE Trans. Commun., Vol. 67, no. 6, pp. 4326–4336, 2019.
  • J. Zhang, C. Wen, S. Jin, and G. Y. Li, “Artificial intelligence-aided receiver for a CP-free OFDM system: Design, simulation, and experimental test,” IEEE. Access., Vol. 7, pp. 58901–58914, 2019.
  • M. Kim, W. Lee, J. Yoon, and O. Jo, “Toward the realization of encoder and decoder using deep neural networks,” IEEE Commun. Mag., Vol. 57, no. 5, pp. 57–63, 2019.
  • T. Matsumine and H. Ochiai, “A novel PAPR reduction scheme for polar-coded OFDM systems,” IEEE Commun. Lett., Vol. 23, no. 12, pp. 2372–2375, 2019.
  • P. Patil, M. R. Patil, S. Itraj, and U. L. Bomble, “A review on MIMO OFDM technology basics and more,” in 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), Mysore, India, 2017, pp. 119–124.
  • S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wirel. Commun., Vol. 12, no. 2, pp. 56–65, 2005.
  • Y. Rahmatallah and S. Mohan, “Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy,” IEEE Commun. Surv. Tutor., Vol. 15, no. 4, pp. 1567–1592, 2013.
  • P. P. Ann and R. Jose, “Comparison of PAPR reduction techniques in OFDM systems,” in 2016 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, 2016, pp. 1–5.
  • P. K. Pradhan, S. S. Yadav, and S. K. Patra, “PAPR reduction in OFDM systems,” in 2014 Annual IEEE India Conference (INDICON), Pune, 2014, pp. 1–5.
  • M. Y. Ali, S. M. S. Alam, M. S. M. Sher, M. T. Hasan, and M. M. Rahman, “Performance analysis of OFDM in wireless communication,” in 2009 Fourth International Conference on Computer Sciences and Convergence Information Technology, Seoul, South Korea, 2009, pp. 903–906.
  • M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural networks-based machine learning for wireless networks: A tutorial,” IEEE Commun. Surv. Tutor., Vol. 21, no. 4, pp. 3039–3071, 2019.
  • R. Tombe and S. Viriri, “Effective processing of convolutional neural networks for computer vision: A tutorial and survey,” IETE Tech. Rev., Vol. XX, pp. 1–14, 2020. doi:10.1080/02564602.2020.1823252.
  • H. He, S. Jin, C. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-driven deep learning for physical layer communications,” IEEE Wirel. Commun., Vol. 26, no. 5, pp. 77–83, 2019.
  • M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, “Deep learning applications and challenges in big data analytics,” J. Big. Data., Vol. 2, no. 1, pp. 1–21, 2015.
  • I. Arel, D. C. Rose, and T. P. Karnowski, “Deep machine learning - A new frontier in artificial intelligence research,” IEEE Comput. Intell. Mag., Vol. 5, no. 4, pp. 13–18,2010.
  • W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. Müller, “Evaluating the visualization of what a deep neural network has learned,” IEEE Trans. Neural. Netw. Learn. Syst., Vol. 28, no. 11, pp. 2660–2673, 2017.
  • S. Dörner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep learning based communication over the air,” IEEE. J. Sel. Top. Signal. Process., Vol. 12, no. 1, pp. 132–143,2018.
  • B. Ding, H. Qian, and J. Zhou, “Activation functions and their characteristics in deep neural networks,” in 2018 Chinese Control and Decision Conference (CCDC), Shenyang, 2018, pp. 1836–1841.
  • M. M. Lau and K. H. Lim, “Review of adaptive activation function in deep neural network,” in 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 2018, pp. 686–690.
  • A. Shrestha and A. Mahmood, “Review of deep learning algorithms and architectures,” IEEE. Access., Vol. 7, pp. 53040–53065, 2019.
  • Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutor., Vol. 20, no. 4, pp. 2595–2621, 2018.
  • A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. Ten Brink, “OFDM-autoencoder for end-to-end learning of communications systems,” in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 2018, pp. 1–5.
  • K. M. Asif and A. Trivedi, “OFDM ensemble autoencoder using CNN and SPSA for end-to-end learning communication systems,” in 2020 IEEE 4th Conference on Information & Communication Technology (CICT), Chennai, India, 2020, pp. 1–6.
  • Y. Zhang, J. Li, Y. Zakharov, X. Li, and J. Li, “Deep learning based underwater acoustic OFDM communications,” Appl. Acoust., Vol. 154, pp. 53–58, 2019.
  • Tensorflow framework. [Online]. Available: https://www.tensorflow.org/.
  • Caffe framework. [Online]. Available: https://caffe.berkeleyvision.org/.
  • N. J. Venkatesan, C. Nam, and D. R. Shin, “Deep learning frameworks on Apache spark: A review,” IETE Tech. Rev., Vol. 36, no. 2, pp. 164–177, 2019.
  • Deeplearning4j framework. [Online]. Available: https://deeplearning4j.org/.
  • Torch framework. [Online]. Available: http://torch.ch/.
  • Pytorch framework. [Online]. Available: https://pytorch.org/.
  • MxNet framework. [Online]. Available: https://mxnet.apache.org/versions/1.7.0/.
  • Microsoft cognitive toolkit framework. [Online]. Available: https://docs.microsoft.com/en-us/cognitive-toolkit/.
  • T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cogn. Commun. Netw., Vol. 3, no. 4, pp. 563–575, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.