386
Views
2
CrossRef citations to date
0
Altmetric
Power Electronics

Performance Assessment of a Novel Eco-Friendly Solar Panel Mounted Hybrid Rotating Energy System with Renewable Energy Applications

ORCID Icon & ORCID Icon

References

  • S. Raizada, and V. Verma. “Step up gain converter with fast MPPT control under moving partial shading for train rooftop PV-DC-µG,” in 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), 2018, pp. 1–6.
  • R. Faranda, and S. Leva, “Energy comparison of MPPT techniques for PV systems,” WSEAS Trans. Power Syst., Vol. 3, no. 6, pp. 446–455, 2008.
  • K. Aygül, M. Cikan, T. Demirdelen, and M. Tumay, “Butterfly optimization algorithm based maximum power point tracking of photovoltaic systems under partial shading condition,” Energy Sources Part A, 1–19, 2019. doi:10.1080/15567036.2019.1677818
  • A. Sharma, H. P. Singh, and S. K. Sinha. “Performance enhancement of integrated solar-wind hybrid energy system using MPPT,” in 2018 3rd International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH), 2018, pp. 1–4.
  • B. Kilic, and E. Dursun. “Integration of innovative photovoltaic technology to the railway trains: A case study for Istanbul airport-M1 light metro line,” in IEEE EUROCON 2017-17th International Conference on Smart Technologies, 2017, pp. 336–340.
  • M. Wei, W. Wei, H. Ruonan, and W. Ziyi. “Auxiliary power supply system of passenger train based on photovoltaic and energy storage,” in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, Jun. 2016, pp. 784–788.
  • Y. He, et al., “Feasibility of a new helical blade structure for a PV integrated wind turbine in a heat-driven swirling wind field,” Energy, Vol. 185, pp. 585–598, Oct. 2019. doi:10.1016/j.energy.2019.07.029
  • W. T. Chong, A. Fazlizan, S. C. Poh, K. C. Pan, W. P. Hew, and F. B. Hsiao, “The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane,” Appl. Energy, Vol. 112, pp. 601–609, Dec. 2013. doi:10.1016/j.apenergy.2012.12.064
  • F. S. Tymvios, C. P. Jacovides, S. C. Michaelides, and C. Scouteli, “Comparative study of Å ngström’s and artificial neural networks’ methodologies in estimating global solar radiation,” Sol. Energy, Vol. 78, no. 6, pp. 752–762, 2005. doi:10.1016/j.solener.2004.09.007
  • L. Olatomiwa, S. Mekhilef, S. Shamshirband, K. Mohammadi, D. Petković, and C. Sudheer, “A support vector machine–firefly algorithm-based model for global solar radiation prediction,” Sol. Energy, Vol. 115, pp. 632–644, May 2015. doi:10.1016/j.solener.2015.03.015
  • Y. Jiang, “Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models,” Energy. Policy., Vol. 36, no. 10, pp. 3833–3837, Oct. 2008. doi:10.1016/j.enpol.2008.06.030
  • R. Meenal, and A. I. Selvakumar. “Review on artificial neural network based solar radiation prediction,” in 2017 2nd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, Oct. 2017, pp. 302–305.
  • B. M. Alluhaidah, H. H. Aly, and M. E. El-Hawary. “Performance testing of different configurations of hybrid proposed models for solar radiation prediction using WNN and ANN,” in 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019, pp. 1–4.
  • H. J. Loschi, Y. Iano, J. León, A. Moretti, F. D. Conte, and H. Braga, “A review on photovoltaic systems: mechanisms and methods for irradiation tracking and prediction,” Smart Grid and Renewable Energy, Vol. 6, no. 7, pp. 187, 2015. doi:10.4236/sgre.2015.67017
  • T. Demirdelen, I. O. Aksu, B. Esenboga, K. Aygul, F. Ekinci, and M. Bilgili, “A new method for generating short-term power forecasting based on artificial neural networks and optimization methods for solar photovoltaic power plants,” in Solar Photovoltaic Power Plants, Radu-Emil Precup, Tariq KamalSyed, and Zulqadar Hassan, Ed. Singapore: Springer, 2019, pp. 165–189.
  • F. Ekinci, T. Demirdelen, I. O. Aksu, K. Aygul, B. Esenboga, and M. Bilgili, “A novel hybrid metaheuristic optimization method to estimate medium-term output power for horizontal axis wind turbine,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 233, no. 5, pp. 646–658, 2019. doi:10.1177/0957650918821040
  • A. Calcabrini, H. Ziar, O. Isabella, and M. Zeman, “A simplified skyline-based method for estimating the annual solar energy potential in urban environments,” Nature Energy, Vol. 4, no. 3, pp. 206–215, 2019. doi:10.1038/s41560-018-0318-6
  • Y. Li, and C. Liu, “Estimating solar energy potentials on pitched roofs,” Energy. Build., Vol. 139, pp. 101–107, Mar. 2017. doi:10.1016/j.enbuild.2016.12.070
  • M. Bou-Rabee, S. A. Sulaiman, M. S. Saleh, and S. Marafi, “Using artificial neural networks to estimate solar radiation in Kuwait,” Renewable Sustainable Energy Rev., Vol. 72, pp. 434–438, May 2017. doi:10.1016/j.rser.2017.01.013
  • C. Voyant, F. Motte, G. Notton, A. Fouilloy, M.-L. Nivet, and J.-L. Duchaud, “Prediction intervals for global solar irradiation forecasting using regression trees methods,” Renewable Energy, Vol. 126, pp. 332–340, Oct. 2018. doi:10.1016/j.renene.2018.03.055
  • M. B. A. Shuvho, M. A. Chowdhury, S. Ahmed, and M. A. Kashem, “Prediction of solar irradiation and performance evaluation of grid connected solar 80KWp PV plant in Bangladesh,” Energy Reports, Vol. 5, pp. 714–722, Nov. 2019. doi:10.1016/j.egyr.2019.06.011
  • A. Rosato, R. Altilio, R. Araneo, and M. Panella, “Prediction in photovoltaic power by neural networks,” Energies, Vol. 10, no. 7, pp. 1003, Jul. 2017. doi:10.3390/en10071003
  • P. Bharadwaj, and V. John. “Shading fraction based global maximum power prediction for photovoltaic energy conversion systems,” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa Village, HI, Jun. 2018, pp. 1163–1168.
  • N. Premalatha, and A. Valan Arasu, “Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms,” Journal of Applied Research and Technology, Vol. 14, no. 3, pp. 206–214, Jun. 2016. doi:10.1016/j.jart.2016.05.001
  • A. Asrari, T. X. Wu, and B. Ramos, “A Hybrid Algorithm for short-term solar power prediction—sunshine state case study,” IEEE Trans. Sustain. Energy, Vol. 8, no. 2, pp. 582–591, Apr. 2017. doi:10.1109/TSTE.2016.2613962
  • O. Abedinia, D. Raisz, and N. Amjady, “Effective prediction model for Hungarian small-scale solar power output,” IET Renew. Power Gener., Vol. 11, no. 13, pp. 1648–1658, Nov. 2017. doi:10.1049/iet-rpg.2017.0165
  • C. Schuss, B. Eichberger, and T. Rahkonen. “Impact of sampling interval on the accuracy of estimating the amount of solar energy,” in 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Taipei, Taiwan, May 2016, pp. 1–6.
  • S. N. Mughal, Y. R. Sood, and R. K. Jarial, “A neural network-based Time-Series model for predicting global solar radiations,” IETE. J. Res., 1–13, Jun. 2021. doi:10.1080/03772063.2021.1934576
  • Z. Pang, F. Niu, and Z. O’Neill, “Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons,” Renewable Energy, Vol. 156, pp. 279–289, Aug. 2020. doi:10.1016/j.renene.2020.04.042
  • Z. Ramedani, M. Omid, A. Keyhani, B. Khoshnevisan, and H. Saboohi, “A comparative study between fuzzy linear regression and support vector regression for global solar radiation prediction in Iran,” Sol. Energy, Vol. 109, pp. 135–143, Nov. 2014. doi:10.1016/j.solener.2014.08.023
  • I. Akhtar, and S. Kirmani, “Error-Based wind power prediction technique based on Generalized factors analysis with improved power system reliability,” IETE. J. Res., 1–12, Jul. 2020.
  • Y. Zhang, et al., “Wind speed prediction using wavelet decomposition based on lorenz disturbance model,” IETE. J. Res., Vol. 66, no. 5, pp. 635–642, Sep. 2020. doi:10.1080/03772063.2018.1512384
  • G. Li, and J. Shi, “On comparing three artificial neural networks for wind speed forecasting,” Appl. Energy, Vol. 87, no. 7, pp. 2313–2320, Jul. 2010. doi:10.1016/j.apenergy.2009.12.013
  • R. G. Kavasseri, and K. Seetharaman, “Day-ahead wind speed forecasting using f-ARIMA models,” Renewable Energy, Vol. 34, no. 5, pp. 1388–1393, May 2009. doi:10.1016/j.renene.2008.09.006
  • E. Cadenas, and W. Rivera, “Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks,” Renewable Energy, Vol. 34, no. 1, pp. 274–278, Jan. 2009. doi:10.1016/j.renene.2008.03.014
  • Aasim, S. N. Singh, and A. Mohapatra, “Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting,” Renewable Energy, vol. 136, pp. 758–768, Jun. 2019. doi:10.1016/j.renene.2019.01.031
  • M. Ding, H. Zhou, H. Xie, M. Wu, Y. Nakanishi, and R. Yokoyama, “A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting,” Neurocomputing, Vol. 365, pp. 54–61, 2019. doi:10.1016/j.neucom.2019.07.058
  • H. Wang, S. Han, Y. Liu, J. Yan, and L. Li, “Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system,” Appl. Energy, Vol. 237, pp. 1–10, Mar. 2019. doi:10.1016/j.apenergy.2018.12.076
  • Y. Zhang, H. Sun, and Y. Guo, “Wind power prediction based on PSO-SVR and grey combination model,” IEEE. Access., Vol. 7, pp. 136254–136267, 2019. doi:10.1109/ACCESS.2019.2942012
  • T. Demirdelen, F. Ekinci, B. D. Mert, İ Karasu, and M. Tümay, “Green touch for hydrogen production via alkaline electrolysis: The semi-flexible PV panels mounted wind turbine design, production and performance analysis,” Int. J. Hydrogen Energy, Vol. 45, no. 18, pp. 10680–10695, Apr. 2020. doi:10.1016/j.ijhydene.2020.02.007
  • R. Eberhart, and J. Kennedy. “A new optimizer using particle swarm theory,” in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39–43.
  • B. Esenboga, and T. Demirdelen, “Efficiency and cost based multi-optimization and thermal/electromagnetic analyses of 3-Phase Dry-type transformer,” IETE. J. Res., 1–13, Mar. 2020. doi:10.1080/03772063.2020.1732841

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.