251
Views
4
CrossRef citations to date
0
Altmetric
Medical Electronics

Respiratory Effort Signal Based Sleep Apnea Detection System Using Improved Random Forest Classifier

ORCID Icon, , &

References

  • R. B. Berry, et al., “Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events,” J. Clin. Sleep Med., Vol. 8, no. 5, pp. 597–619, Oct. 2012. https://doi.org/10.5664/jcsm.2172.
  • L. Spicuzza, D. Caruso, and G. Di Maria, “Obstructive sleep apnoea syndrome and its management,” Ther. Adv. Chron. Dis., Vol. 6, no. 5, pp. 273–285, Jul. 2015.
  • D. J. Eckert, A. S. Jordan, P. Merchia, and A. Malhotra, “Central sleep apnea,” Chest, Vol. 131, no. 2, pp. 595–607, Feb. 2007.
  • B. Rasch, and J. Born, “About sleep’s role in memory,” Physiol. Rev., Vol. 93, no. 2, pp. 681–766, Apr. 2013.
  • C. Prasad. “Obstructive sleep apnea hypopnea syndrome – Indian scenario,” Persp. Med. Res., 2013.
  • S. Agarwal, A. Rani, V. Singh, and A. P. Mittal. “FPGA based wireless emergency medical system for developing countries,” 2015 Annual Global Online Conference on Information and Computer Technology (GOCICT), Nov. 2015.
  • A. Bhardwaj, A. Gupta, P. Jain, A. Rani, and J. Yadav. “Classification of human emotions from EEG signals using SVM and LDA Classifiers,” 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Feb. 2015.
  • A. Narang, B. Batra, A. Ahuja, J. Yadav, and N. Pachauri, “Classification of EEG signals for epileptic seizures using Levenberg-Marquardt algorithm based multilayer perceptron neural network,” J. Intell. Fuzzy Syst., Vol. 34, no. 3, pp. 1669–1677, Mar. 2018.
  • S. A. Keenan. “Chapter 3: An overview of polysomnography,” Handbook of Clinical Neurophysiology, pp. 33–50, 2005.
  • S. Taran, and V. Bajaj, “Sleep apnea detection using artificial bee colony optimize hermite basis functions for EEG signals,” IEEE Trans. Instrum. Meas., Vol. 69, no. 2, pp. 608–616, 2020. DOI: 10.1109/tim.2019.2902809.
  • K. Feng, H. Qin, S. Wu, W. Pan, and G. Liu, “A sleep apnea detection method based on unsupervised feature learning and single-lead electrocardiogram,” IEEE Trans. Instrum. Meas., Vol. 70, pp. 1–12, 2021. DOI: 10.1109/tim.2020.3017246.
  • U. Erdenebayar, Y. Kim, J. Park, E. Joo, and K. Lee, “Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram,” Comput. Methods Progr. Biomed., Vol. 180, pp. 105001, 2019. DOI: 10.1016/j.cmpb.2019.105001.
  • K. Rajesh, R. Dhuli, and T. Kumar, “Obstructive sleep apnea detection using discrete wavelet transform-based statistical features,” Comput. Biol. Med., Vol. 130, pp. 104199, 2021. DOI: 10.1016/j.compbiomed.2020.104199.
  • L. Haoyu, L. Jianxing, N. Arunkumar, A. Hussein, and M. Jaber, “An IoMT cloud-based real time sleep apnea detection scheme by using the SpO2 estimation supported by heart rate variability,” Future Gener. Comput. Syst., Vol. 98, pp. 69–77, 2019. DOI: 10.1016/j.future.2018.12.001.
  • F. Mendonça, S. Mostafa, F. Morgado-Dias, and A. Ravelo-García, “An oximetry based wireless device for sleep apnea detection,” Sensors, Vol. 20, no. 3, pp. 888, 2020. DOI: 10.3390/s20030888.
  • S. Mostafa, F. Mendonca, A. Ravelo-Garcia, G. Julia-Serda, and F. Morgado-Dias, “Multi-objective hyperparameter optimization of convolutional neural network for obstructive sleep apnea detection,” IEEE Access, Vol. 8, pp. 129586–129599, 2020. DOI: 10.1109/access.2020.3009149.
  • C. Viswabhargav, R. Tripathy, and U. Acharya, “Automated detection of sleep apnea using sparse residual entropy features with various dictionaries extracted from heart rate and EDR signals,” Comput. Biol. Med., Vol. 108, pp. 20–30, 2019. DOI: 10.1016/j.compbiomed.2019.03.016.
  • H. ElMoaqet, M. Eid, M. Glos, M. Ryalat, and T. Penzel, “Deep recurrent neural networks for automatic detection of sleep apnea from single channel respiration signals,” Sensors, Vol. 20, no. 18, pp. 5037, 2020. DOI: 10.3390/s20185037.
  • M. Baboli, A. Singh, B. Soll, O. Boric-Lubecke, and V. Lubecke, “Wireless sleep apnea detection using continuous wave quadrature Doppler radar,” IEEE Sens. J., Vol. 20, no. 1, pp. 538–545, 2020. DOI: 10.1109/jsen.2019.2941198.
  • Y. Zhou, et al., “Validation of novel automatic ultra-wideband radar for sleep apnea detection,” J. Thorac. Dis., Vol. 12, no. 4, pp. 1286–1295, 2020. DOI: 10.21037/jtd.2020.02.59.
  • S. Sreejith, H. Khanna Nehemiah, and A. Kannan, “Clinical data classification using an enhanced SMOTE and chaotic evolutionary feature selection,” Comput. Biol. Med., Vol. 126, pp. 103991, 2020. DOI: 10.1016/j.compbiomed.2020.103991.
  • Y. Lin, H. Wu, C. Hsu, P. Huang, Y. Huang, and Y. Lo, “Sleep apnea detection based on thoracic and abdominal movement signals of wearable piezoelectric bands,” IEEE J. Biomed. Health Inform., Vol. 21, no. 6, pp. 1533–1545, 2017. DOI: 10.1109/jbhi.2016.2636778.
  • A. Prabha, A. Trivedi, A. Kumar, and C. Kumar. “Automated system for obstructive sleep apnea detection using heart rate variability and respiratory rate variability”, 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017. DOI: 10.1109/icacci.2017.8126021.
  • Y. Zhang, S. Wei, L. Zhang, and C. Liu, “Comparing the performance of random forest, SVM and their variants for ECG quality assessment combined with nonlinear features,” J. Med. Biol. Eng., Vol. 39, no. 3, pp. 381–392, 2018. DOI: 10.1007/s40846-018-0411-0.
  • S. Khalighi, T. Sousa, J. Santos, and U. Nunes, “ISRUC-sleep: a comprehensive public dataset for sleep researchers,” Comput. Methods Progr. Biomed., Vol. 124, pp. 180–192, 2016. DOI: 10.1016/j.cmpb.2015.10.013.
  • V. López, A. Fernández, S. García, V. Palade, and F. Herrera, “An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics,” Inf. Sci., Vol. 250, pp. 113–141, 2013. DOI: 10.1016/j.ins.2013.07.007.
  • A. Donders, G. van der Heijden, T. Stijnen, and K. Moons, “Review: a gentle introduction to imputation of missing values,” J. Clin. Epidemiol., Vol. 59, no. 10, pp. 1087–1091, 2006. DOI: 10.1016/j.jclinepi.2006.01.014.
  • F. J. Valverde-Albacete, and C. Peláez-Moreno, “The multivariate entropy triangle and applications,” International Conference on Hybrid Artificial Intelligence Systems, Seville, Spain Springer, Cham, 2016, pp. 647–658.
  • N. Sezgin, and M. Emin Tagluk, “Energy based feature extraction for classification of sleep apnea syndrome,” Comput. Biol. Med., Vol. 39, no. 11, pp. 1043–1050, 2009. DOI: 10.1016/j.compbiomed.2009.08.005.
  • M. Borowska, “Entropy-based algorithms in the analysis of biomedical signals,” Stud. Logic Gramm. Rhetor., Vol. 43, no. 1, pp. 21–32, 2015. DOI: 10.1515/slgr-2015-0039.
  • M. Murugappan, N. Ramachandran, and Y. Sazali, “Classification of human emotion from EEG using discrete wavelet transform,” J. Biomed. Sci. Eng., Vol. 03, no. 04, pp. 390–396, 2010. DOI: 10.4236/jbise.2010.34054.
  • C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., Vol. 27, no. 3, pp. 379–423, 1948. DOI: 10.1002/j.1538-7305.1948.tb01338.x.
  • J. Bruhn, L. Lehmann, H. Röpcke, T. Bouillon, and A. Hoeft, “Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane,” Anesthesiology, Vol. 95, no. 1, pp. 30–35, 2001. DOI: 10.1097/00000542-200107000-00010.
  • S. Fuhrman, M. Cunningham, X. Wen, G. Zweiger, J. Seilhamer, and R. Somogyi, “The application of Shannon entropy in the identification of putative drug targets,” Biosystems, Vol. 55, no. 1-3, pp. 5–14, 2000. DOI: 10.1016/s0303-2647(99)00077-5.
  • D. de Araujo, W. Tedeschi, A. Santos, J. Elias, U. Neves, and O. Baffa, “Shannon entropy applied to the analysis of event-related fMRI time series,” NeuroImage, Vol. 20, no. 1, pp. 311–317, 2003. DOI: 10.1016/s1053-8119(03)00306-9.
  • Z. Masetic, and A. Subasi, “Congestive heart failure detection using random forest classifier,” Comput. Methods Programs Biomed., Vol. 130, pp. 54–64, 2016. DOI: 10.1016/j.cmpb.2016.03.020.
  • P. Nishant, S. Mehrotra, B. Mohan, and G. Devaraju, “Identifying classification technique for medical diagnosis,” ICT Anal. Appl., 95–104, 2020. DOI: 10.1007/978-981-15-0630-7_10.
  • C.-W. Hsu, and C.-J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Netw., Vol. 13, no. 2, pp. 415–425, 2002. DOI: 10.1109/72.991427.
  • V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Neural Netw., Vol. 10, no. 5, pp. 988–999, 1999.
  • M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review,” IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., Vol. 13, pp. 6308–6325, 2020. DOI: 10.1109/jstars.2020.3026724.
  • L. Breiman, “Random forests,” Mach. Learn., Vol. 45, no. 1, pp. 5–32, 2001. DOI: 10.1023/a:1010933404324.
  • M. Pal, “Random forest classifier for remote sensing classification,” Int. J. Remote Sens., Vol. 26, no. 1, pp. 217–222, 2005. DOI: 10.1080/01431160412331269698.
  • R. Prati, G. Batista, and M. Monard, “Learning with class skews and small disjuncts,” Adv. Artif. Intell. SBIA, Vol. 2004, pp. 296–306, 2004. DOI: 10.1007/978-3-540-28645-5_30.
  • G. Batista, R. Prati, and M. Monard, “A study of the behavior of several methods for balancing machine learning training data,” ACM SIGKDD Explor. Newslett., Vol. 6, no. 1, pp. 20–29, 2004. DOI: 10.1145/1007730.1007735.
  • T.-F. Wu, and C.-J. Lin. “Probability estimates for multi-class classification by pairwise coupling,” Jmlr.org, 2004. [Online]. Available: https://www.jmlr.org/papers/volume5/wu04a/wu04a.pdf.
  • N. Kambhatla, and T. Leen, “Dimension reduction by local principal component analysis,” Neural Comput., Vol. 9, no. 7, pp. 1493–1516, 1997. DOI: 10.1162/neco.1997.9.7.1493.
  • A. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognit., Vol. 30, no. 7, pp. 1145–1159, 1997. DOI: 10.1016/s0031-3203(96)00142-2.
  • F. Valverde-Albacete, and C. Peláez-Moreno, “Assessing information transmission in data transformations with the channel multivariate entropy triangle,” Entropy, Vol. 20, no. 7, pp. 498, 2018. https://doi.org/10.3390/e20070498.
  • G. M. Weiss, K. McCarthy, and B. Zabar, “Cost-sensitive learning vs. sampling: which is best for handling unbalanced classes with unequal error costs?,” DMIN, Vol. 7, pp. 35–41, 2007.
  • F. Last, G. Douzas, and F. Bacao. “Oversampling for imbalanced learning based on K-means and SMOTE,” arXiv [cs.LG], 2017.
  • T. Le, “Differential privacy-based evaporative cooling feature selection and classification with relief-F and random forests,” Bioinformatics., Vol. 33, no. 18, pp. 2906–2913, 2017. DOI: 10.1093/bioinformatics/btx298.
  • R. Jayaraj, and J. Mohan, “Classification of sleep apnea based on sub-band decomposition of EEG signals,” Diagnostics, Vol. 11, no. 9, pp. 1571, 2021. DOI: 10.3390/diagnostics11091571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.