104
Views
4
CrossRef citations to date
0
Altmetric
Electromagnetics

Application of Theory of Characteristics Modes for Bandwidth Enhancement of a Miniaturized Minkowski Fractal Antenna

, &

References

  • B. B. Mandelbrot, “Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands,” Proc. Natl. Acad. Sci. USA, Vol. 72, no. 10, pp. 3825–8, 1975. DOI: 10.1073/pnas.72.10.3825
  • R. Ataeiseresht, C. H. Ghobadi, and J. Nourinia, “A novel analysis of Minkowski fractal microstrip patch antenna,” J. Electromagn. Waves Appl., Vol. 20, no. 8, pp. 1115–27, 2006. DOI: 10.1163/156939306776930268
  • D. H. Werner, and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas Propag. Mag., Vol. 45, no. 1, pp. 38–57, 2003. DOI: 10.1109/MAP.2003.1189650
  • R. Gurjar, D. K. Upadhyay, B. K. Kanaujia, and K. Sharma, “A novel compact self-similar fractal UWB MIMO antenna,” Int. J. RF Microwave Comput.-Aided Eng., Vol. 29, no. 3, pp. e21632, 2019. DOI: 10.1002/mmce.21632
  • Y. B. Chaouche, I. Messaoudene, I. Benmabrouk, M. Nedil, and F. Bouttout, “Compact coplanar waveguide-fed reconfigurable fractal antenna for switchable multiband systems,” IET Microw. Antennas Propag., Vol. 13, no. 1, pp. 1–8, 2018. DOI: 10.1049/iet-map.2018.5005
  • V. Sharma, N. Lakwar, N. Kumar, and T. Garg, “Multiband low-cost fractal antenna based on parasitic split ring resonators,” IET Microw. Antennas Propag., Vol. 12, no. 6, pp. 913–9, 2017. DOI: 10.1049/iet-map.2017.0623
  • Y. K. Choukiker, and S. K. Behera, “Wideband frequency reconfigurable Koch snowflake fractal antenna,” IET Microw. Antennas Propag., Vol. 11, no. 2, pp. 203–8, 2017. DOI: 10.1049/iet-map.2016.0238
  • C. P. Baliarda, J. Romeu, and A. Cardama, “The Koch monopole: A small fractal antenna,” IEEE Trans. Antennas Propag., Vol. 48, no. 11, pp. 1773–81, 2000. DOI: 10.1109/8.900236
  • R. Sampath, and K. T. Selvan, “Compact hybrid Sierpinski Koch fractal UWB MIMO antenna with pattern diversity,” Int. J. RF Microwave Comput.-Aided Eng., Vol. 30, no. 1, pp. e22017, 2020. DOI: 10.1002/mmce.22017
  • H. Rajabloo, V. A. Kooshki, and H. Oraizi, “Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application,” AEU-Int. J. Electron. Commun., Vol. 73, pp. 144–9, 2017. DOI: 10.1016/j.aeue.2016.12.027
  • F. Wang, F. Bin, Q. Sun, J. Fan, F. Liang, and X. Xiao, “A novel UHF M inkowski fractal antenna for partial discharge detection,” Microw. Opt. Technol. Lett., Vol. 59, no. 8, pp. 1812–9, 2017. DOI: 10.1002/mop.30629
  • I. P. E. D. Nugraha, I. Surjati, and S. Alam, “Miniaturized Minkowski-Island fractal microstrip antenna fed by proximity coupling for wireless fidelity application,” TELKOMNIKA (Telecommun. Comput. Electron. Control), Vol. 15, no. 3, pp. 1119–26, 2017. DOI: 10.12928/TELKOMNIKA.v15i3.6826
  • D. Oloumi, S. Ebadi, A. Kordzadeh, A. Semnani, P. Mousavi, and X. Gong, “Miniaturized reflect array unit cell using fractal-shaped patch-slot configuration,” IEEE Antennas Wirel. Propag. Lett., Vol. 11, pp. 10–13, 2011. DOI: 10.1109/LAWP.2011.2181478
  • K. J. Vinoy, and A. Pal, “Dual-frequency characteristics of Minkowski-square ring antennas,” IET Microw. Antennas Propag., Vol. 4, no. 2, pp. 219–24, 2010. DOI: 10.1049/iet-map.2008.0202
  • S. Behera, and K. J. Vinoy, “Multi-port network approach for the analysis of dual band fractal microstrip antennas,” IEEE Trans. Antennas Propag., Vol. 60, no. 11, pp. 5100–6, 2012. DOI: 10.1109/TAP.2012.2208085
  • S. Costanzo, and F. Venneri, “Miniaturized fractal reflectarray element using fixed-size patch,” IEEE Antennas Wirel. Propag. Lett., Vol. 13, pp. 1437–40, 2014. DOI: 10.1109/LAWP.2014.2341032
  • S. Jindal, J. S. Sivia, and H. S. Bindra, “Hybrid fractal antenna using meander and Minkowski curves for wireless applications,” Wirel. Pers. Commun., Vol. 109, no. 3, pp. 1471–90, 2019. DOI:10.1007/s11277-019-06622-5
  • M. Kaur, and J. S. Sivia, “Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO,” AEU-Int. J. Electron. Commun., Vol. 99, pp. 14–24, 2019. DOI: 10.1016/j.aeue.2018.11.005
  • I. S. Bangi, and J. S. Sivia, “Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications,” AEU-Int. J. Electron. Commun., Vol. 85, pp. 159–68, 2018. DOI: 10.1016/j.aeue.2018.01.005
  • H. Rmili, O. El Mrabet, J. M. Floc’h, and J. L. Miane, “Study of an electrochemically-deposited 3-D random fractal tree-monopole antenna,” IEEE Trans. Antennas Propag., Vol. 55, no. 4, pp. 1045–50, 2007. DOI: 10.1109/TAP.2007.893392
  • D. Li, Z. Wu, and J. F. Mao, “Ultra-wideband high-gain dipole antenna evolved from hexagonal Sierpinski grid fractal gasket,” IET Microw. Antennas Propag., Vol. 13, no. 5, pp. 574–83, 2019. DOI: 10.1049/iet-map.2018.5415
  • H. Oraizi, and S. Hedayati, “Circularly polarized multiband microstrip antenna using the square and Giuseppe Peano fractals,” IEEE Trans. Antennas Propag., Vol. 60, no. 7, pp. 3466–70, 2012. DOI: 10.1109/TAP.2012.2196912
  • R. Ghatak, M. Pal, C. Goswami, and D. R. Poddar, “Moore curve fractal-shaped miniaturized complementary spiral resonator,” Microw. Opt. Technol. Lett., Vol. 55, no. 8, pp. 1950–4, 2013. DOI: 10.1002/mop
  • C. Goswami, R. Ghatak, and D. R. Poddar, “Multiband bisected Hilbert monopole antenna loaded with multiple subwavelength split-ring resonators,” IET Microw. Antennas Propag., Vol. 12, no. 10, pp. 1719–27, 2018. DOI: 10.1049/iet-map.2017.1215
  • S. Rajkumar, N. Srinivasan, A. Natesan, and K. T. Selvan, “A penta-band hybrid fractal MIMO antenna for ISM applications,” Int. J. RF Microwave Comput.-Aided Eng., Vol. 28, no. 2, pp. e21185, 2018. DOI: 10.1002/mmce.21185
  • Y. K. Choukiker, S. K. Sharma, and S. K. Behera, “Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices,” IEEE Trans. Antennas Propag., Vol. 62, no. 3, pp. 1483–8, 2013. DOI: 10.1109/TAP.2013.2295213
  • M. Kaur, and J. S. Sivia, “Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm,” Int. J. RF Microwave Comput.-Aided Eng., Vol. 30, no. 1, pp. e 22000, 2020. DOI: 10.1002/mmce.22000
  • M. Kaur, and J. S. Sivia, “ANN-based design of hybrid fractal antenna for biomedical applications,” Int. J. Electron., Vol. 106, no. 8, pp. 1184–99, 2019. DOI: 10.1080/00207217.2019.1582712
  • S. Kakkar, and S. Rani, “Implementation of fractal geometry to enhance the bandwidth of CPW fed printed monopole antenna,” IETE. J. Res., Vol. 63, no. 1, pp. 23–30, 2017. DOI: 10.1080/03772063.2016.1242382
  • S. Kakkar, T. S. Kamal, and A. P. Singh, “On the design and analysis of I-shaped fractal antenna for emergency management,” IETE. J. Res., Vol. 65, no. 1, pp. 104–13, 2019. DOI: 10.1080/03772063.2017.1407270
  • A. Kumar, and A. P. S. Pharwaha, “Development of a modified Hilbert curve fractal antenna for multiband applications,” IETE. J. Res., 1–10, 2020. DOI: 10.1080/03772063.2020.1772126
  • R. Dhara, “A compact dual band dual polarized monopole antenna with enhanced bandwidth for C, X, and Ku band applications,” Prog. Electromagn. Res. Lett., Vol. 96, pp. 65–72, 2021.
  • R. Dhara, and M. Mitra, “A triple-band circularly polarized annular ring antenna with asymmetric ground plane for wireless applications,” Eng. Rep., Vol. 2, no. 4, pp. e12150, 2020. DOI: 10.1002/eng2.12150
  • R. Dhara, “Design of a miniaturized CPW fed Z-shaped monopole antenna using theory of characteristics modes for bandwidth enhancement,” Sādhanā, Vol. 46, no. 2, pp. 1–14, 2021. DOI: 10.1007/s12046-021-01610-7
  • R. Dhara, S. Yadav, M. M. Sharma, S. K. Jana, and M. C. Govil, “A circularly polarized quad-band annular ring antenna with asymmetric ground plane using theory of characteristic modes,” Prog. Electromagn. Res. M, Vol. 100, pp. 51–68, 2021.
  • C. Zhao, and C. F. Wang, “Characteristic mode design of wide band circularly polarized patch antenna consisting of H-shaped unit cells,” IEEE. Access., Vol. 6, pp. 25292–9, 2018. DOI: 10.1109/ACCESS.2018.2828878
  • D. Wen, Y. Hao, H. Wang, and H. Zhou, “Design of a wideband antenna with stable omnidirectional radiation pattern using the theory of characteristic modes,” IEEE Trans. Antennas Propag., Vol. 65, no. 5, pp. 2671–6, 2017. DOI: 10.1109/TAP.2017.2679767
  • C. Wang, Y. Chen, and S. Yang, “Bandwidth enhancement of a dual-polarized slot antenna using characteristic modes,” IEEE Antennas Wirel. Propag. Lett., Vol. 17, no. 6, pp. 988–92, 2018. DOI: 10.1109/LAWP.2018.2828881
  • K. Saraswat, and A. R. Harish, “Analysis of wideband circularly polarized ring slot antenna using characteristics mode for bandwidth enhancement,” Int. J. RF Microwave Comput.-Aided Eng., Vol. 28, no. 2, pp. e21186, 2018. DOI: 10.1002/mmce.21186
  • K. Li, and Y. Shi, “Wideband MIMO handset antenna design based on theory of characteristic modes,” Int. J. RF Microwave Comput.-Aided Eng., Vol. 28, no. 4, pp. e21217, 2018. DOI: 10.1002/mmce.21217
  • A. Ghalib, and M. S. Sharawi, “New antenna mode generation based on theory of characteristic modes,” Int. J. RF Microwave Comput.-Aided Eng., Vol. 29, no. 6, pp. e21686, 2019. DOI: 10.1002/mmce.21686
  • N. Kumar, and R. Khanna, “A compact multiband multi-input multi-output antenna for 4G/5G and IoT devices using theory of characteristic modes,” Int. J. RF Microwave Comput.-Aided Eng., Vol. 30, no. 1, pp. e22012, 2020. DOI: 10.1002/mmce.22012
  • R. Garbacz, and R. Turpin, “A generalized expansion for radiated and scattered fields,” IEEE Trans. Antennas Propag., Vol. 19, no. 3, pp. 348–58, 1971. DOI: 10.1109/TAP.1971.1139935
  • R. Harrington, and J. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Trans. Antennas Propag., Vol. 19, no. 5, pp. 622–8, 1971. DOI: 10.1109/TAP.1971.1139999
  • R. Harrington, and J. Mautz, “Computation of characteristic modes for conducting bodies,” IEEE Trans. Antennas Propag., Vol. 19, no. 5, pp. 629–39, 1971. DOI: 10.1109/TAP.1971.1139990
  • Y. Chen, and C. F. Wang. Characteristic modes: theory and applications in antenna engineering. Hoboken, New Jersey, USA: John Wiley & Sons, 2015.
  • S. S. Sran, and J. S. Sivia, “ANN and IFS based wearable hybrid fractal antenna with DGS for S, C and X band application,” AEU-Int. J. Electron. Commun., Vol. 127, pp. 153425, 2020. DOI: 10.1016/j.aeue.2020.153425

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.