82
Views
1
CrossRef citations to date
0
Altmetric
Control Engineering

Optimization of Discrete Anamorphic Stretch Transform and Phase Recovery for ECG Signal Compression

ORCID Icon & ORCID Icon

References

  • Y. Zigel, A. Cohen, and A. Katz, “The weighted diagnostic distortion (WDD) measure for ECG signal compression,” IEEE Trans. Biomed. Eng., Vol. 47, no. 11, pp. 1422–1430, 2000. https://doi.org/10.1109/TBME.2000.880093
  • H. Kim, “ECG signal compression and Classification algorithm with quad level vector for ECG holter system,” IEEE Trans. on Information Technology in Biomedicine, Vol. 14, no. 1, pp. 93–100, 2010.
  • M. S. Hossain, and N. Amin, “ECG compression using subband thresholding of the wavelet coefficients,” Aust. J. Basic Appl. Sci., Vol. 5, no. 5, pp. 739–749, 2011.
  • M. Blanco-Velasco, F. Cruz-Roldan, J. I. Goldino- Llorente, and K. E. Barner, “ECG compression with retrieved quality guaranteed,” IEE Electron. Lett., Vol. 40, no. 23, pp. 1466–1467, 2004. https://doi.org/10.1049/el:20046382
  • R. Benzid, E. Marir, A. Boussaad, M. Benyoucef, and D. Arar, “Fixed percentage of wavelet coefficients to be zeroed for ECG compression,” Electron. Lett., Vol. 39, no. 11, 2003. https://doi.org/10.1049/el:20030560
  • A. Tiwari, and T. H. Falk, “Lossless electrocardiogram signal compression: A review of existing methods,” Biomed. Signal. Process. Control., Vol. 51, pp. 338–346, 2019. https://doi.org/10.1016/j.bspc.2019.03.004
  • D. Craven, and B. McGinley, “Compressed sensing for bioelectric signals: A review,” IEEE. J. Biomed. Health. Inform., Vol. 19, no. 2, 2015. https://doi.org/10.1109/JBHI.2014.2327194
  • M. Fira, L. Goras, C. Barabasa, and N. Cleju, “On ECG compressed sensing using specific over complete dictionaries,” Adv. Elect. Comput. Eng., Vol. 10, no. 4, pp. 23–28, 2010. https://doi.org/10.4316/aece.2010.04004
  • H. Mamaghanian, et al., “Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes,” IEEE Trans. Biomed. Eng., Vol. 58, no. 9, pp. 2456–2466, Sep. 2011. https://doi.org/10.1109/TBME.2011.2156795
  • L. F. Polanıa, R. E. Carrillo, and M. Blanco-Velasco, “Exploiting prior knowledge in compressed sensing Wireless ECG systems,” IEEE. J. Biomed. Health. Inform., Vol. 19, no. 2, 2015. https://doi.org/10.1109/JBHI.2014.2325017
  • S. Abhishek, S. Veni, and K. A. Narayanankutty, “Biorthogonal wavelet filters for compressed sensing ECG reconstruction,” Biomed. Signal. Process. Control., Vol. 47, pp. 183–195, 2019. https://doi.org/10.1016/j.bspc.2018.08.011
  • T. Y. Rezaiia, “ECG signal compression and denoising via optimum sparsity order selection in compressed sensing frame work,” Biomed. Signal. Process. Control., Vol. 41, pp. 161–171, 2018. https://doi.org/10.1016/j.bspc.2017.11.015
  • V. Natarajan, and A. Vyas, “Power efficient compressive sensing for continuous monitoring of ECG and PPG in a wearable system,” IEEE World Forum on Internet of Things. 2016. https://doi.org/10.1109/WF-IoT38332.2016
  • J. Zhang, and Z. Gu , “Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ1 minimization reconstruction,” IEEE. J. Biomed. Health. Inform., Vol. 19, no. 2, pp. 520–528, 2015.
  • M. Melek, and A. Khattab, “ECG compression using wavelet-based compressed sensing with prior support information,” Biomed. Signal. Process. Control., Vol. 68, pp. 102786, 2021. https://doi.org/10.1016/j.bspc.2021.102786
  • B. Liu, Z. Zhang, G. Xu, H. Fan, and Q. Fu. “Energy-efficient telemonitoring of physiological signals via compressed sensing: A fast algorithm and power consumption evaluation,” [Online]. Available: http://llarxiv.org/pd£I1309.7843.pdf.
  • Z. Zhang, T. Jung, S. Makeig, and B. D. Rao, “Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning,” IEEE Trans. Biomed. Eng., Vol. 60, no. 2, pp. 300–309, Feb. 2013. https://doi.org/10.1109/TBME.2012.2226175
  • C. J. Deepu, et al., “A hybrid data compression scheme for power reduction in wireless sensors for IoT,” IEEE Trans. Biomed. Circuits and Systems, Vol. 11, no. 2, pp. 245–254, April. 2017. https://doi.org/10.1109/TBCAS.2016.2591923
  • J. L. Ma, and T. T. Zhang, “A novel ECG data compression method using adaptive Fourier decomposition with security guarantee in e-Health applications,” IEEE. J. Biomed. Health. Inform., Vol. 19, no. 3, pp. 986–994, May 2015.
  • K. Luo, J. Li, and J. Wu, “A dynamic compression scheme for energy-efficient real-time wireless electrocardiogram biosensors,” IEEE Trans. Instrumentation and Measurements, Vol. 63, no. 9, pp. 2160–2169, Sep. 2014. https://doi.org/10.1109/TIM.2014.2308063
  • L. Rebollo-Neiraa, and D. Cerna, “Wavelet-based dictionaries for dimensionality reduction of ECG signals,” Biomed. Signal. Process. Control., Vol. 54, pp. 101593, 2019. https://doi.org/10.1016/j.bspc.2019.101593
  • M. Rakshit, and S. Das, “Electrocardiogram beat type dictionary-based compressed sensing for telecardiology application,” Biomed. Signal. Process. Control., Vol. 47, pp. 207–218, 2019. https://doi.org/10.1016/j.bspc.2018.08.016
  • D. Rzepka, “Low-complexity lossless multichannel ECG compression based on selective linear prediction,” Biomed. Signal. Process. Control., Vol. 57, pp. 101705, 2020. https://doi.org/10.1016/j.bspc.2019.101705
  • T.-H. Tsai∗, and F.-L. Tsai, “Efficient lossless compression scheme for multichannel ECG signal processing”,” Biomed. Signal. Process. Control., Vol. 59, pp. 101879, 2020. https://doi.org/10.1016/j.bspc.2020.101879
  • C. K. Jha, and M. H. Kolekar, “Electrocardiogram data compression using DCT based discrete orthogonal stockwell transform,” Biomed. Signal. Process. Control., Vol. 46, pp. 174–181, 2018. https://doi.org/10.1016/j.bspc.2018.06.009
  • S. K. Mukhopadhyay, “An ECG compression algorithm with guaranteed reconstruction quality based on optimum truncation of singular values and ASCII character encoding,” Biomed. Signal. Process. Control., Vol. 44, pp. 288–306, 2018. https://doi.org/10.1016/j.bspc.2018.05.005
  • C. K. Jha, and M. H. Kolekar, “Empirical mode decomposition and wavelet transform based ECG data compression scheme,” IRBM, Vol. 42, no. 1, pp. 65–72, 2021. https://doi.org/10.1016/j.irbm.2020.05.008
  • C. K. Jha, and M. H. Kolekar, “Electrocardiogram data compression techniques for cardiac healthcare systems: A methodological review,” IRBM 2021. https://doi.org/10.1016/j.irbm.2021.06.007
  • G. Cosoli, S. Spinsante, F. Scardulla, L. D’Acquisto, and L. Scalise, “Wireless ECG and cardiac monitoring systems: State of the art, available commercial devices and useful electronic components,” Measurement. , Vol. 177 June 2021. Article 109243.
  • M. H. Asghari, and B. Jalali, “Anamorphic transformation and its allocation to time-bandwidth compression,” Appl. Opt., Vol. 52, pp. 6735–6743, 2013. https://doi.org/10.1364/AO.52.006735
  • M. H. Asghari, and B. Jalali, “Discrete Anamorphic transform for image compression,” IEEE Signal Process Lett., Vol. 21, pp. 829–833, 2014. https://doi.org/10.1109/LSP.2014.2319586
  • M. H. Asghari, and B. Jalali. “Big data compression using anamorphic stretch transform”, ASE BIGDATA/SOCIALCOM/Cybersecurity Conference, 2014.
  • R. Thilagavathy, and B. Venkataramani. “ ECG signal compression using discrete anamorphic stretch transform”, 5th International Conference on Microelectronics, Circuits & Systems, May, 19th- 20th, 2018. ISBN: 81-85824-46-1.
  • R. Thilagavathy, and B. Venkataramani, “A novel ECG signal compression using wavelet and discrete anamorphic stretch transforms,” Biomed. Signal. Process. Control. (June 2021. https://doi.org/10.1016/j.bspc.2021.102773.
  • R. Thilagavathy, and B. Venkataramani, “A novel feature enhancement technique for ECG Arrhythmia classification using discrete anamorphic stretch transform,” in Circuit Systems and Signal Processing, Springer, Revision submitted. June 2021.
  • M. H. Asghari, and J. Azaña. “Self-reference temporal phase reconstruction based on causality arguments in linear optical filters”, CLEO Technical Digest © OSA 2012.
  • M. H. Asghari, and B. Jalali, “Stereopsis-inspired time-stretched amplified real-time spectrometer (STARS)”,” IEEE Photonics Journal, Vol. 4, no. 5, pp. 1693–1701. October 2012.
  • J. G. Proakis, and D. G. Manolakis. Digital Signal Processing Principles, Algorithms, and Applications. 3rd ed. Prentice-hall International, Inc., 1996.
  • M. S. Manikandan, and S. Dandapat, “Wavelet threshold-based TDL and TDR algorithms for real-time ECG signal compression,” Biomed. Signal Process. Control, Vol. 3, pp. 44–46, 2008. https://doi.org/10.1016/j.bspc.2007.09.003
  • The MIT-BIH Arrhythmia Database. (Feb. 2005). [Online]. Available: http://www.physionet.org/physiobank/database/mitdb.
  • Z. Lu, et al., “Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm,” IEEE Trans. Biomed. Eng., Vol. 47, no. 7, pp. 849–856, Jul. 2000.
  • M. S. Manikandan, and S. Dandapat. “ECG signal compression using discrete sinc interpolation,” in Proc. IEEE ICISIP, Dec.2005, pp. 14–19.
  • C. M. Fira, and L. Goras, “An ECG signals compression method and its validation using NNs,” IEEE Trans. Biomed. Eng., Vol. 55, no. 4, pp. 1319–1326, 2008. https://doi.org/10.1109/TBME.2008.918465
  • A. Ouamri, and A. N. Ali, “ECG compression method using lorentzian functions model,” Digit. Signal. Process., Vol. 17, pp. 319–326, 2007. https://doi.org/10.1016/j.dsp.2006.07.003
  • B. A. Rajoub, “An efficient coding algorithm for the compression of ECG signals using the wavelet transform,” IEEE Trans. Biomed. Eng., Vol. 49, no. 4, pp. 355–362, April. 2002. https://doi.org/10.1109/10.991163
  • S. G. Miaou, and J. H. Larn, “Adaptive vector quantization for ECG signal compression using overlapped and linearly shifted codevectors,” Med. Biol. Eng. Comput., Vol. 38, pp. 547–552, 2000. https://doi.org/10.1007/BF02345751
  • M. S. Manikandan, and S. Dandapat, “Wavelet threshold-based ECG compression using USZZQ and huffman coding of DSM,” Biomed. Signal. Process. Control., Vol. 1, pp. 261–270, 2006. https://doi.org/10.1016/j.bspc.2006.11.003
  • C. K. Jha, and M. H. Kolekar, “Tunable Q-wavelet based ECG data compression with validation using cardiac arrhythmia patterns,” Biomed. Signal. Process. Control., Vol. 66, pp. 102464, 2021. https://doi.org/10.1016/j.bspc.2021.102464
  • C.-T. Ku, K.-C. Hung, T.-C. Wu, and H.-S. Wang, “Wavelet-based ECG data compression system with linear quality Control scheme,” IEEE Trans. Biomed. Eng, Vol. 57, no. 6, pp. 1399–1409, June. 2010. https://doi.org/10.1109/TBME.2009.2037605
  • R. Benzid, A. Messaoudi, and A. Boussaad, “Constrained ECG compression algorithm using the block-based discrete cosine transform,” Digit. Signal. Process., Vol. 18, pp. 56–64, 2008. https://doi.org/10.1016/j.dsp.2007.08.003
  • Y. Zigel, A. Cohen, and A. Katz, “ECG signal compression using analysis by synthesis coding,” IEEE Trans. Biomed. Eng, Vol. 47, no. 10, pp. 308–316, Oct. 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.