115
Views
1
CrossRef citations to date
0
Altmetric
optoelectronics

Exploring the Slow Light Features of Lattice Shifted Twist Induced Photonic Crystal Waveguides with Ring Like Holes

& ORCID Icon

References

  • T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D. Appl. Phys, Vol. 40, pp. 2666–2670, May 2007. doi:10.1088/0022-3727/40/9/S07
  • T. Baba, “Slow light in photonic crystals,” Nat. Photonics, Vol. 2, pp. 465–473, Aug. 2008. doi:10.1038/nphoton.2008.146
  • S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt., Vol. 12, Sep. 2010. Art. no. 104004.
  • Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature, Vol. 438, pp. 65–69, Nov. 2005. doi:10.1038/nature04210
  • A. Saynatjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express, Vol. 15, pp. 8323–8328, Jun. 2007. doi:10.1364/OE.15.008323
  • L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett., Vol. 96, pp. 1–3, Jun. 2010. Art. no. 241104.
  • V. D. R. Pavan, and S. Roy, “Tuning of photonic bandgap in lithium niobate photonic crystal slab structures for wavelength filtering,” Indian J. Pure Appl. Phys., Vol. 57, pp. 923–927, Dec. 2019.
  • P. Halevi, and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett., Vol. 85, pp. 1875–1878, Aug. 2000. doi:10.1103/PhysRevLett.85.1875
  • B. K. Singh, and P. C. Pandey, “Tunable temperature-dependent THz photonic bandgaps and localization mode engineering in 1D periodic and quasi-periodic structures with graded-index materials and InSb,” Appl. Opt., Vol. 57, pp. 8171–8181, Oct. 2018. doi:10.1364/AO.57.008171
  • T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett, Vol. 87, pp. 1–3, Oct. 2005. Art. no. 151112.
  • H. Nemec, et al., “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys., Vol. 96, pp. 4072–4075, Oct. 2004. doi:10.1063/1.1787623
  • S. M. Weiss, M. Haurylau, and P. M. Fauchet, “Tunable photonic bandgap structures for optical interconnects,” Opt. Mater., Vol. 27, pp. 740–744, Feb. 2005. doi:10.1016/j.optmat.2004.08.007
  • A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. De Rossi, and G. Eisenstein, “Narrowband optical parametric amplification measurements in Ga0.5In0.5P photonic crystal waveguides,” Opt. Express, Vol. 23, pp. 17751–17757, Jun. 2015. doi:10.1364/OE.23.017751
  • S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Optical buffer performance enhancement using particle SwarmOptimization in ring-shape-hole photonic crystal waveguide,” Optik. (Stuttg), Vol. 124, pp. 5989–5993, Dec. 2013. doi:10.1016/j.ijleo.2013.04.114
  • L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature, Vol. 397, pp. 594–598, Feb. 1999. doi:10.1038/17561
  • M. Bahadoran, A. Afroozeh, J. B. Ali, and P. P. Yupapin, “Slow light generation using microring resonators for optical buffer application,” Opt. Eng., Vol. 51, Apr. 2012. Art. no. 04460. doi:10.1117/1.OE.51.4.044601
  • Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” IEEE J. Light. Technol., Vol. 25, pp. 201–206, Jan. 2007. doi:10.1109/JLT.2006.887188
  • G. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys., Vol. 101, pp. 1–5, May 2007. Art. no. 093109.
  • Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature, Vol. 414, pp. 289–293, Nov. 2001. doi:10.1038/35104529
  • S. Roy, M. Santagiustina, P. Colman, S. Combrié, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” IEEE Photonics J., Vol. 4, pp. 224–233, Feb. 2012. doi:10.1109/JPHOT.2011.2181942
  • Y. Zhang, and B. Li, “Photonic crystal-based bending waveguides for optical interconnections,” Opt. Express, Vol. 14, pp. 5723–5732, Jun. 2006. doi:10.1364/OE.14.005723
  • C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express, Vol. 19, pp. 26948–26955, Dec. 2011. doi:10.1364/OE.19.026948
  • J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express, Vol. 16, pp. 6227–6232, Apr. 2008. doi:10.1364/OE.16.006227
  • Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett., Vol. 34, pp. 1072–1074, Apr. 2009. doi:10.1364/OL.34.001072
  • J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photonics Technol. Lett., Vol. 21, pp. 1571–1573, Oct. 2009. doi:10.1109/LPT.2009.2030160
  • Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” IEEE J. Light. Technol., Vol. 29, pp. 3083–3090, Oct. 2011. doi:10.1109/JLT.2011.2165334
  • V. D. R. Pavan, and S. Roy, “Analyzing dispersion properties of photonic crystal waveguides with hole and ring like lattice by introducing systematic shift and twist,” Opt. Quant. Electron., Vol. 53, pp. 1–27, Nov. 2021. Art. no. 711.
  • S. G. Johnson, and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express, Vol. 8, pp. 173–190, Jan. 2001. doi:10.1364/OE.8.000173
  • J. Ma, and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photonics Technol. Lett., Vol. 20, pp. 1237–1239, Jul. 2008. doi:10.1109/LPT.2008.926018
  • J. V. Malik, K. D. Jindal, V. Kumar, V. Kumar, A. Kumar, K. S. Singh, and T. P. Singh, “Effect of temperature on photonic band gaps in semiconductor-based one-dimensional photonic crystal,” Adv. Opt. Technol., Vol. 2013, pp. 1–8, Aug. (2013). Art. no. 798087. doi:10.1155/2013/798087
  • K. D. Xuan, L. C. Van, V. C. Long, Q. H. Dinh, L. V. Mai, M. Trippenbach, and R. Buczyński, “Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water,” Opt. Quant. Electron, Vol. 49, pp. 1–12, Feb. 2017. Art. no. 87. doi:10.1007/s11082-016-0848-8
  • V. D. R. Pavan, and S. Roy. “Temperature Effects on Dispersion Tailoring of Slow Light Engineered Photonic Crystal Waveguide,” 2019 24th Microoptics Conference (MOC), 2019, pp. 268-269. doi:10.23919/MOC46630.2019.8982894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.