147
Views
0
CrossRef citations to date
0
Altmetric
Articles

A Novel Distributed Matching Global and Local Fuzzy Clustering (DMGLFC) for 3D Brain Image Segmentation for Tumor Detection

&

References

  • Z. Zhou, Z. He, M. Shi, J. Du, and D. Chen, “3D dense connectivity network with atrous convolutional feature pyramid for brain tumor segmentation in magnetic resonance imaging of human heads,” Comput. Biol. Med., pp. 103766, 2020.
  • Z. Zhou, Z. He, and Y. Jia, “AFPNet: A 3D fully convolutional neural network with atrous-convolution feature pyramid for brain tumor segmentation via MRI images,” Neurocomputing, 2020.
  • I. Njeh, L. Sallemi, I. B. Ayed, K. Chtourou, S. Lehericy, D. Galanaud, and A. B. Hamida, “3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach,” Comput. Med. Imaging Graph., Vol. 40, pp. 108–119, 2015.
  • H. Khotanlou, O. Colliot, J. Atif, and I. Bloch, “3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models,” Fuzzy Sets Syst., Vol. 160, no. 10, pp. 1457–1473, 2009.
  • S. Banerjee, S. Mitra, and B. U. Shankar, “Automated 3D segmentation of brain tumor using visual saliency,” Inf. Sci. (Ny), Vol. 424, pp. 337–353, 2018.
  • V. G. Kanas, E. I. Zacharaki, C. Davatzikos, K. N. Sgarbas, and V. Megalooikonomou, “A low cost approach for brain tumor segmentation based on intensity modeling and 3D random walker,” Biomed. Signal. Process. Control., Vol. 22, pp. 19–30, 2015.
  • J. Jiang, Y. Wu, M. Huang, W. Yang, W. Chen, and Q. Feng, “3D brain tumor segmentation in multimodal MR images based on learning population-and patient-specific feature sets,” Comput. Med. Imaging Graph., Vol. 37, no. 7–8, pp. 512–521, 2013.
  • M. A. Naser, and M. J. Deen, “Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images,” Comput. Biol. Med., pp. 103758, 2020.
  • L. Pei, S. Bakas, A. Vossough, S. M. Reza, C. Davatzikos, and K. M. Iftekharuddin, “Longitudinal brain tumor segmentation prediction in MRI using feature and label fusion,” Biomed. Signal. Process. Control., Vol. 55, pp. 101648, 2020.
  • M. Akil, R. Saouli, and R. Kachouri, “Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy,” Med. Image Anal., pp. 101692, 2020.
  • P. Mlynarski, H. Delingette, A. Criminisi, and N. Ayache, “3D convolutional neural networks for tumor segmentation using long-range 2D context,” Comput. Med. Imaging Graph., Vol. 73, pp. 60–72, 2019.
  • H. Li, A. Li, and M. Wang, “A novel end-to-end brain tumor segmentation method using improved fully convolutional networks,” Comput. Biol. Med., Vol. 108, pp. 150–160, 2019.
  • T. Yang, J. Song, and L. Li, “A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI,” Biocybernet. Biomed. Eng., Vol. 39, no. 3, pp. 613–623, 2019.
  • H. Chen, Z. Qin, Y. Ding, L. Tian, and Z. Qin, “Brain tumor segmentation with deep convolutional symmetric neural network,” Neurocomputing, 2019.
  • S. Nema, A. Dudhane, S. Murala, and S. Naidu, “Rescuenet: An unpaired GAN for brain tumor segmentation,” Biomed. Signal. Process. Control., Vol. 55, pp. 101641, 2020.
  • P. Sriramakrishnan, T. Kalaiselvi, and R. Rajeswaran, “Modified local ternary patterns technique for brain tumour segmentation and volume estimation from mri multi-sequence scans with gpucuda machine,” Biocybernet. Biomed. Eng., Vol. 39, no. 2, pp. 470–487, 2019.
  • S. Alagarsamy, K. Kamatchi, V. Govindaraj, Y. D. Zhang, and A. Thiyagarajan, “Multi-channeled MR brain image segmentation: A new automated approach combining BAT and clustering technique for better identification of heterogeneous tumors,” Biocybernet. Biomed. Eng., Vol. 39, no. 4, pp. 1005–1035, 2019.
  • A. Bal, M. Banerjee, A. Chakrabarti, and P. Sharma, “MRI brain tumor segmentation and analysis using rough-fuzzy C-means and shape based properties,” J. King Saud Univ. Comput. Inform. Sci., 2018.
  • M. Soltaninejad, G. Yang, T. Lambrou, N. Allinson, T. L. Jones, T. R. Barrick, and X. Ye, “Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels,” Comput. Methods Programs Biomed., Vol. 157, pp. 69–84, 2018.
  • S. Chen, C. Ding, and M. Liu, “Dual-force convolutional neural networks for accurate brain tumor segmentation,” Pattern Recognit., Vol. 88, pp. 90–100, 2019.
  • R. Saouli, M. Akil, and R. Kachouri, “Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images,” Comput. Methods Programs Biomed., Vol. 166, pp. 39–49, 2018.
  • Y. Wang, C. Li, T. Zhu, and J. Zhang, “Multimodal brain tumor image segmentation using WRN-PPNet,” Comput. Med. Imaging Graph., Vol. 75, pp. 56–65, 2019.
  • J. Tong, Y. Zhao, P. Zhang, L. Chen, and L. Jiang, “MRI brain tumor segmentation based on texture features and kernel sparse coding,” Biomed. Signal. Process. Control., Vol. 47, pp. 387–392, 2019.
  • V. Sundararaj, “An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm,” Int. J. Intell. Eng. Syst., Vol. 9, no. 3, pp. 117–126, 2016.
  • J. Jose, N. Gautam, M. Tiwari, T. Tiwari, A. Suresh, V. Sundararaj, and M. R. Rejeesh, “An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion,” Biomed. Signal. Process. Control., Vol. 66, pp. 102480, 2021.
  • S. Bonte, I. Goethals, and R. Van Holen, “Machine learning based brain tumour segmentation on limited data using local texture and abnormality,” Comput. Biol. Med., Vol. 98, pp. 39–47, 2018.
  • P. S. Raja, “Brain tumor classification using a hybrid deep auto encoder with Bayesian fuzzy clustering-based segmentation approach,” Biocybernet. Biomed. Eng., Vol. 40, no. 1, pp. 440–453, 2020.
  • A. Qayyum, A. Lalande, and F. Meriaudeau, “Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging,” Comput. Biol. Med., Vol. 127, pp. 104097, 2020.
  • H. Saleem, A. R. Shahid, and B. Raza, “Visual interpretability in 3D brain tumor segmentation network,” Comput. Biol. Med., Vol. 133, pp. 104410, 2021.
  • J. Chen, Z. Wan, J. Zhang, W. Li, Y. Chen, Y. Li, and Y. Duan, “Medical image segmentation and reconstruction of prostate tumor based on 3D AlexNet,” Comput. Methods Programs Biomed., Vol. 200, pp. 105878, 2021.
  • R. R. Outeiral, P. Bos, A. Al-Mamgani, B. Jasperse, R. Simões, and U. A. van der Heide, “Oropharyngeal primary tumor segmentation for radiotherapy planning on magnetic resonance imaging using deep learning,” Phys. Imaging Rad. Oncol., Vol. 19, pp. 39–44, 2021.
  • G. Karayegen, and M. F. Aksahin, “Brain tumor prediction on MR images with semantic segmentation by using deep learning network and 3D imaging of tumor region,” Biomed. Signal. Process. Control., Vol. 66, pp. 102458, 2021.
  • E. Dikici, et al., “Automated brain metastases detection framework for T1-weighted contrast-enhanced 3D MRI,” IEEE. J. Biomed. Health. Inform., Vol. 24, no. 10, pp. 2883–2893, 2020.
  • B. S. S, “Eminent identification And segmentation Of optic disk In digital fundus images using Marr–Hildreth operator,” Turkish J. Comput. Math. Edu. (TURCOMAT), Vol. 12, no. 10, pp. 6123–6128, 2021.
  • S. Kanniappan, D. Samiayya, D. R. Vincent PM, K. Srinivasan, D. N. K. Jayakody, D. G. Reina, and A. Inoue, “An efficient hybrid fuzzy-clustering driven 3D-modeling of magnetic resonance imagery for enhanced brain tumor diagnosis,” Electronics. (Basel), Vol. 9, no. 3, pp. 475, 2020.
  • R. Nandhini Abirami, P. M. Durai Raj Vincent, K. Srinivasan, U. Tariq, and C. Y. Chang, “Deep CNN and deep GAN in computational visual perception-driven image analysis,” Complexity, Vol. 2021, 2021.
  • R. N. Abiram, and P. D. R. Vincent, “Identity preserving multi-pose facial expression recognition using fine tuned VGG on the latent space vector of generative adversarial network,” Math. Biosci. Eng., Vol. 18, no. 4, pp. 3699–3717, 2021.
  • R. McKinley, M. Rebsamen, R. Meier, and R. Wiest, “Triplanar ensemble of 3d-to-2d cnns with label-uncertainty for brain tumor segmentation,” in International MICCAI brainlesion workshop, Cham: Springer, 2019, pp. 379–387.
  • https://www.med.upenn.edu/cbica/brats2020/data.html
  • B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al., “The multimodal brain tumor image segmentation benchmark (BRATS),” IEEE Trans. Med. Imaging, Vol. 34, no. 10, pp. 1993–2024, 2015. DOI: 10.1109/TMI.2014.2377694.
  • S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, et al., “Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features,” Nature Scientific Data, Vol. 4, pp. 170117, 2017. DOI: 10.1038/sdata.2017.117.
  • S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al., “Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge,” arXiv Preprint ArXiv:1811.02629, 2018.
  • S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al., “Segmentation Labels and Radiomic Features for the Pre-operative scans of the TCGA-GBM collection,” The Cancer Imaging Archive, 2017. DOI: 10.7937/K9/TCIA.2017.KLXWJJ1Q.
  • S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al., “Segmentation Labels and Radiomic Features for the Pre-operative scans of the TCGA-LGG collection,” The Cancer Imaging Archive, 2017. DOI: 10.7937/K9/TCIA.2017.GJQ7R0EF.
  • M. S. Yang, and Y. Nataliani, “A feature-reduction fuzzy clustering algorithm based on feature-weighted entropy,” IEEE Trans. Fuzzy Syst., Vol. 26, no. 2, pp. 817–835, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.