408
Views
16
CrossRef citations to date
0
Altmetric
Medical Electronics

Multi-Deep CNN based Experimentations for Early Diagnosis of Breast Cancer

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Y. N. Shirazi, A. Esmaeli, M. B. Tavakoli, and F. Setoudeh, “Improving three-dimensional near-infrared Imaging Systems for breast cancer diagnosis,” IETE. J. Res. 2021. doi:10.1080/03772063.2021.1878064.
  • A. Alqudah, and A. M. Alqudah, “Sliding window based support vector machine system for classification of breast cancer using histopathological microscopic images,” IETE. J. Res. 2019. doi:10.1080/03772063.2019.1583610.
  • R. Uppada, S. P. Kodati, and S. K. Rao, “Automated computer aided diagnosis using altered multi-phase level sets in application to categorize the breast cancer biopsy images,” IETE. J. Res. 2021. doi:10.1080/03772063.2021.1962741.
  • C. Abirami, R. Harikumar, and S. R. Sannasi Chakravarthy, “Performance analysis and detection of microcalcification in digital mammograms using wavelet features.” International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) IEEE, 2016. doi:10.1109/WiSPNET.2016.7566558.
  • S. R. Sannasi Chakravarthy, and H. Rajaguru, “A comparison of detrend fluctuation analysis, Gaussian mixture model and artificial neural network performance in the detection of microcalcification from digital mammograms,” Int. J. Biomed. Eng. Technol., Vol. 37, no. 1, pp. 83–103, 2021. doi:10.1504/IJBET.2021.117516.
  • P. Swathypriyadharsini, and K. Premalatha, “Hybrid cuckoo search with clonal selection for triclustering gene expression data of breast cancer,” IETE. J. Res. 2021. doi:10.1080/03772063.2021.1911691.
  • R. S. Shukla, and Y. Aggarwal, “Fourier transform and autoregressive HRV features in prediction and classification of breast cancer,” IETE. J. Res. 2021. doi:10.1080/03772063.2021.1878063.
  • A. Hakim, and R. N. Awale, “Designing a three-layer back propagation artificial neural network for breast thermogram classification,” IETE. J. Res. 2021. doi:10.1080/03772063.2021.1958074.
  • M. A. Aswathy, and M. Jagannath, “Dual stage normalization approach towards classification of breast cancer,” IETE. J. Res. 2020. doi:10.1080/03772063.2020.1754140.
  • S. Jafarzadeh Ghoushchi, R. Ranjbarzadeh, S. A. Najafabadi, et al., “An extended approach to the diagnosis of tumour location in breast cancer using deep learning,” J Ambient Intell Human Comput 2021. doi:10.1007/s12652-021-03613-y.
  • G. M. Rajathi, “Optimized radial basis neural network for classification of breast cancer images,” J Ambient Intell Human Comput 2020. doi:10.1007/s12652-020-02534-6.
  • L. Ahmed, M. M. Iqbal, H. Aldabbas, et al., “Images data practices for semantic segmentation of breast cancer using deep neural network,” J Ambient Intell Human Comput 2020. doi:10.1007/s12652-020-01680-1.
  • N. Mathappan, R. S. Soundariya, A. Natarajan, and S. K. Gopalan, “Bio-medical analysis of breast cancer risk detection based on deep neural network,” Int. J. Med. Eng. Inform., Vol. 12, no. 6, pp. 529–541, 2020. doi:10.1504/IJMEI.2020.111027
  • J. Leelavathy, and S. S. Brunda, “A cloud-based secured framework for smart medical diagnosis: a survey,” Int. J. Med. Eng. Inform., Vol. 12, no. 6, pp. 581–590, 2020. doi:10.1504/IJMEI.2020.111031
  • D. Singh, J. Paul Choudhury, and M. De, “A comparative study of meta heuristic model to assess the type of breast cancer disease,” IETE. J. Res. 2020. doi:10.1080/03772063.2020.1775139.
  • S. Faziludeen, and P. Sankaran, “A belief theory-based decision system for breast cancer data,” IETE. J. Res. 2021. doi:10.1080/03772063.2021.1941330.
  • N. Shrivastava, and J. Bharti, “Breast tumor detection in digital mammogram based on efficient seed region growing segmentation,” IETE. J. Res. 2020. doi:10.1080/03772063.2019.1710583.
  • P. U. Hepsaǧ, S. A. ¨Ozel, A. Yazici, “Using deep learning for mammography classification,” in: 2nd Int. Conf. Comput. Sci. Eng. UBMK, vol. 2017, 2017, pp. 418–423. doi:10.1109/UBMK.2017.8093429.
  • Y. J. Tan, K. S. Sim, F. F. Ting, “Breast cancer detection using convolutional neural networks for mammogram imaging system,” in: 2017 2nd Int. Conf. Robot. Autom. Sci, 2017, pp. 1–5. doi:10.1109/ICORAS.2017.8308076.
  • F. Jiang, H. Liu, S. Yu, Y. Xie, “Breast mass lesion classification in mammograms by transfer learning,” in: Proc. 5th Int. Conf. Bioinforma. Comput, ICBCB ‘17, 2017, pp. 59–62, doi:10.1145/3035012.3035022.
  • D. A. Ragab, M. Sharkas, S. Marshall, and J. Ren, “Breast cancer detection using deep convolutional neural networks and support vector machines,” PeerJ., Vol. 7, pp. e6201, 2019. doi:10.7717/peerj.6201.
  • G. Nirmala, and P. Suresh Kumar, “A novel bat optimized runlength networks (BORN) for an efficient classification of breast cancer,” J Ambient Intell Human Comput, Vol. 12, pp. 4797–4808, 2021. doi:10.1007/s12652-020-01890-7.
  • H. N. Khan, A. R. Shahid, A. H. Dar, and H. Alquhayz, “Multi-view feature fusion based four views model for mammogram classification using convolutional neural network,” IEEE. Access., Vol. 7, pp. 165724–165733, 2019. doi:10.1109/ACCESS.2019.2953318.
  • S. U. Khan, N. Islam, Z. Jan, I. Ud Din, and J. J. P. C. Rodrigues, “A novel deep learning based framework for the detection and classification of breast cancer using transfer learning,” Pattern Recogn. Lett, Vol. 125, pp. 1–6, 2019. doi:10.1016/j.patrec.2019.03.022.
  • R. Song, T. Li, and Y. A. N. Wang, “Mammographic classification based on XGBoost and DCNN with multi features,” IEEE. Access., Vol. 8, pp. 75011–75021, 2020. doi:10.1109/ACCESS.2020.2986546.
  • S. R. Sannasi Chakravarthy, and H. Rajaguru, “Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and non-linear regression models: A comparison,” Int. J. Imaging Syst. Technol., Vol. 30, no. 1, pp. 126–146, 2020. doi:10.1002/ima.22364.
  • V. Gupta, and M. Mittal, “R-peak detection for improved analysis in health informatics,” Int. J. Med. Eng. Inform., Vol. 13, no. 3, pp. 213–223, 2021. doi:10.1504/IJMEI.2021.114888
  • S. C. Sannasi Chakravarthy, and H. Rajaguru. A systematic review on screening, examining and classification of breast cancer. In2021 Smart Technologies, Communication and Robotics (STCR) 2021 Oct 9 (pp. 1-4). IEEE.
  • V. Gupta, and M. Mittal, “A comparison of ECG signal pre-processing using FrFT, FrWT and IPCA for improved analysis,” IRBM, Vol. 40, no. 3, pp. 145–156, 2019 Jun 1. doi:10.1016/j.irbm.2019.04.003
  • V. Gupta, M. Mittal, V. Mittal, et al., “BP signal analysis using emerging techniques and its validation using ECG Signal,” Sens. Imaging., Vol. 22, no. 25, 2021. doi:10.1007/s11220-021-00349-z.
  • V. Gupta, M. Mittal, and V. Mittal, “R-peak detection based chaos analysis of ECG signal,” Analog Integr Circ Sig Process, Vol. 102, pp. 479–490, 2020. doi:10.1007/s10470-019-01556-1.
  • V. Gupta, and M. Mittal, “A novel method of cardiac arrhythmia detection in electrocardiogram signal,” Int. J. Med. Eng. Inform., Vol. 12, no. 5, pp. 489–499, 2020. doi:10.1504/IJMEI.2020.109943
  • S. Jhajharia, S. Verma, and R. Kumar, “An amalgamated prediction model for breast cancer detection using fuzzy features,” Int. J. Med. Eng. Inform., Vol. 12, no. 4, pp. 345–356, 2020. doi:10.1504/IJMEI.2020.108238
  • V. Gupta, and M. Mittal, “R-Peak detection in ECG signal using yule–walker and principal component analysis,” IETE. J. Res., Vol. 67, no. 6, pp. 921–934, 2021. doi:10.1080/03772063.2019.1575292.
  • V. Gupta, M. Mittal, V. Mittal, and A. Gupta, “An efficient AR modelling-based electrocardiogram signal analysis for health informatics,” Int. J. Med. Eng. Inform., Vol. 14, no. 1, pp. 74–89, 2022. doi:10.1504/IJMEI.2022.119314
  • P. Indra, and M. Manikandan, “Multilevel tetrolet transform based breast cancer classifier and diagnosis system for healthcare applications,” J Ambient Intell Human Comput, Vol. 12, pp. 3969–3978, 2021. doi:10.1007/s12652-020-01755-z.
  • S. A. El_Rahman, “Predicting breast cancer survivability based on machine learning and features selection algorithms: a comparative study,” J Ambient Intell Human Comput, Vol. 12, pp. 8585–8623, 2021. doi:10.1007/s12652-020-02590-y.
  • M. Supriya, A. J. Deepa, and C. Mythili, “Mamographic image for breast cancer detection and identification of stages of cancer using MFFC and optimized ANFIS,” J Ambient Intell Human Comput, Vol. 12, pp. 8731–8745, 2021. doi:10.1007/s12652-020-02639-y.
  • S. R. Sannasi Chakravarthy, and H. Rajaguru, “Automatic detection and classification of mammograms using improved extreme learning machine with deep learning,” IRBM 2021. doi:10.1016/j.irbm.2020.12.004.
  • J. Suckling, J. Parker, D. Dance, S. Astley, and I. Hutt. Mammographic image analysis society (mias) database v1. 21, (2015). March 28, 2021. Available https://www.repository.cam.ac.uk/handle/1810/250394.
  • I. C. Moreira student, I. Amaral, I. Domingues, A. Cardoso, M. João Cardoso, and J. S. Cardoso, “INbreast: Toward a full-field digital mammographic database,” Acad. Radiol, Vol. 19, pp. 236–248, 2012. doi:10.1016/j.acra.2011.09.014.
  • V. Savitha, N. Karthikeyan, S. Karthik, et al., “A distributed key authentication and OKM-ANFIS scheme based breast cancer prediction system in the IoT environment,” J Ambient Intell Human Comput, Vol. 12, pp. 1757–1769, 2021. doi:10.1007/s12652-020-02249-8.
  • F. Gao, H. Yoon, T. Wu, and X. Chu, “A feature transfer enabled multi-task deep learning model on medical imaging,” Expert Syst. Appl, Vol. 143, pp. 112957, 2020. doi:10.1016/j.eswa.2019.112957.
  • P. K. Rao, and R. Mishra, “Elliptical shape flexible MIMO antenna with high isolation for breast cancer detection application,” IETE. J. Res. 2020. doi:10.1080/03772063.2020.1819887.
  • H. Zhang, et al., “DE-Ada*: a novel model for breast mass classification using cross-modal pathological semantic mining and organic integration of multi-feature fusions,” Inf. Sci, Vol. 539, pp. 461–486, 2020. doi:10.1016/j.ins.2020.05.080.
  • L. Panigrahi, K. Verma, and B. K. Singh, “Evaluation of image features within and surrounding lesion region for risk stratification in breast ultrasound images,” IETE. J. Res. 2019. doi:10.1080/03772063.2019.1627918.
  • V. Gupta, M. Mittal, and V. Mittal, “R-peak detection using chaos analysis in standard and real time ECG databases,” IRBM, Vol. 40, no. 6, pp. 341–354, 2019 Dec 1. doi:10.1016/j.irbm.2019.10.001
  • V. Gupta, M. Mittal, and V. Mittal, “Chaos theory: An emerging tool for Arrhythmia detection,” Sens. Imaging., Vol. 21, no. 10, 2020. doi:10.1007/s11220-020-0272-9.
  • V. Gupta, M. Mittal, and V. Mittal, “Performance evaluation of various Pre-processing techniques for R-peak detection in ECG signal,” IETE. J. Res. 2020. doi:10.1080/03772063.2020.1756473.
  • V. Gupta, M. Mittal, and V. Mittal, “Chaos theory and ARTFA: Emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias,” Wireless Pers Commun, Vol. 118, pp. 3615–3646, 2021. doi:10.1007/s11277-021-08411-5.
  • S. Haghighi, M. Jasemi, S. Hessabi, and A. Zolanvari, “PyCM: multiclass confusion matrix library in python,” Journal of Open Source Software, Vol. 3, no. 25, pp. 729, 2018. doi:10.21105/joss.00729
  • V. Gupta, M. Mittal, V. Mittal, et al., “A critical review of feature extraction techniques for ECG signal analysis,” J. Inst. Eng. India Ser. B, Vol. 102, pp. 1049–1060, 2021. doi:10.1007/s40031-021-00606-5.
  • V. Gupta, and M. Mittal, “QRS complex detection using STFT, Chaos analysis, and PCA in standard and real-time ECG databases,” J. Inst. Eng. India Ser. B, Vol. 100, pp. 489–497, 2019. doi:10.1007/s40031-019-00398-9.
  • M. Mohsin Jadoon, Q. Zhang, I. U. Haq, S. Butt, and A. Jadoon, “Three-class mammogram classification based on descriptive CNN features,” Hindawi BioMed. Res. Int 2017. doi:10.1155/2017/3640901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.