63
Views
0
CrossRef citations to date
0
Altmetric
Electromagnetics

Analytical Investigation of Body-Centric Communication Links Based on Path Loss in Indoor Environment

&

References

  • D. Hammood, and A. Alkhayyat, “An overview of the survey/review studies in wireless body area network,” in 2020 3rd International Conference on Engineering Technology and its Applications. (IICETA), 2020, pp. 18–23.
  • S. Seneviratne, Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, et al., “A survey of wearable devices and challenges,” IEEE Commun. Surveys Tuts., Vol. 19, no. 4, pp. 2573–2620, Fourthquarter. 2017. DOI:10.1109/COMST.2017.2731979.
  • S. K. Koul, and R. Bharadwaj. Wearable antennas and body centric communication: present and future, Vol. 787. Springer Nature, Singapore, 2021.
  • M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. C. M. Leung, “Body area networks: A survey,” Mobile Netw. Appl., Vol. 16, pp. 171–193, 2011. DOI:10.1007/s11036-010-0260-8.
  • P. A. Catherwood, S. S. Bukhari, G. Watt, W. G. Whittow, and J. McLaughlin, “Body-centric wireless hospital patient monitoring networks using body-contoured flexible antennas,” Microwaves Antennas Propag. IET, Vol. 12, no. 2, pp. 203–210, 2018. DOI:10.1049/iet-map.2017.0604.
  • J. Kim, Y. Kim, and S. Kim, “Ultra wideband channel characteristics for body area network,” in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), 2014, pp. 1–5.
  • R. Bharadwaj, A. Alomainy, and S. K. Koul, “Experimental investigation of body-centric indoor localization using compact wearable antennas and machine learning algorithms,” IEEE Trans. Antennas Propag., Vol. 70, no. 2, pp. 1344–1354, Feb.2021.
  • S. Wang, G. Mao, and J. A. Zhang, “Joint time-of-arrival estimation for coherent UWB ranging in multipath environment with multi-user interference,” IEEE Trans. Signal Process, Vol. 67, no. 14, pp. 3743–3755, 2019. DOI:10.1109/TSP.2019.2916016.
  • I. P. Guembe, P. Lopez-Iturri, H. Klaina, G. G. Ezker, F. S. D. J. Urdanoz, J. L. Z. Cestau, L. Azpilicueta, et al., “Wireless characterization and assessment of an UWB-based system in industrial environments,” IEEE Access, vol. 9, pp. 107824–107841, 2021.
  • M. Ridolfi, S. Vandermeeren, J. Defraye, H. Steendam, J. Gerlo, D. De Clercq, J. Hoebeke, et al., “Experimental evaluation of UWB indoor positioning for sport postures,” Sensors, Vol. 18, no. 2, pp. 168, Jan. 2018. DOI:10.3390/s18010168.
  • S. Zihajehzadeh, and E. J. Park, “A novel biomechanical model-aided IMU/UWB fusion for magnetometer-free lower body motion capture,” IEEE Trans. Systs. Man Cybern. Systs., Vol. 47, no. 6, pp. 927–938, Jun. 2017. DOI:10.1109/TSMC.2016.2521823.
  • R. Bharadwaj, and S. K. Koul, “Assessment of limb movement activities using wearable ultra-wideband technology,” IEEE Trans. Antennas Propag, Vol. 69, no. 4, pp. 2316–2325, Apr. 2021. DOI:10.1109/TAP.2020.3026902.
  • T. Otim, A. Bahillo, L. E. Díez, P. Lopez-Iturri, and F. Falcone, “Towards sub-meter level UWB indoor localization using body wearable sensors,” IEEE. Access., Vol. 8, pp. 178886–178899, 2020. DOI:10.1109/ACCESS.2020.3027669.
  • R. Bharadwaj, S. Swaisaenyakorn, C. G. Parini, J. C. Batchelor, and A. Alomainy, “Impulse radio ultra-wideband communications for localization and tracking of human body and limbs movement for healthcare applications,” IEEE Trans. Antennas Propag., Vol. 65, no. 12, pp. 7298–7309, Dec. 2017. DOI:10.1109/TAP.2017.2759841.
  • R. Bharadwaj, S. Swaisaenyakorn, C. Parini, J. C. Batchelor, S. K. Koul, and A. Alomainy, “UWB channel characterization for compact L-shape configurations for body-centric positioning applications,” IEEE Antennas Wireless Propag. Lett., Vol. 19, no. 1, pp. 29–33, Jan. 2020. DOI:10.1109/LAWP.2019.2951836.
  • P. S. Hall, and Y. Hao. Antennas and Propagation for Body Centric Wireless Communications. Norwood, MA: Artech House, 2012.
  • Q. Tian, K. I. Wang, and Z. Salcic, “Human body shadowing effect on UWB-based ranging system for pedestrian tracking,” IEEE Trans. Instrum. Meas, Vol. 68, no. 10, pp. 4028–4037, Oct. 2019. DOI:10.1109/TIM.2018.2884605.
  • A. Alomainy, A. Sani, A. Rahman, J. G. Santas, and Y. Hao, “Transient characteristics of wearable antennas and radio propagation channels for ultrawideband body-centric wireless communications,” IEEE Trans. Antennas Propag., Vol. 57, no. 4, pp. 875–884, Apr. 2009. DOI:10.1109/TAP.2009.2014588.
  • B. Sansoda, and S. Choomchuay, “An Investigation of UWB path loss for body area network,” in 2018 18th International Symposium on Communication and Information Technology (ISCIT), 2018, pp. 363–366.
  • R. Bharadwaj, and S. K. Koul, “On-Body UWB channel classification and characterization for various physical exercises,” IEEE. Access., Vol. 9, pp. 126256–126264, 2021. DOI:10.1109/ACCESS.2021.3110715.
  • K. Turbic, M. Särestöniemi, M. Hämäläinen, and L. M. Correia, “User influence on polarization characteristics in Off-body channels,” IEEE. Access., Vol. 8, pp. 167570–167584, 2020. DOI:10.1109/ACCESS.2020.3023248.
  • R. G. Garcia-Serna, C. Garcia-Pardo, and J. M. Molina-Garcia- Pardo, “Effect of the receiver attachment position on ultrawideband off-body channels,” IEEE Antennas Wireless Propag. Lett., Vol. 14, pp. 1101–1104, 2015. DOI:10.1109/LAWP.2015.2394737.
  • O. P. Pasquero, and R. D’Errico, “A spatial model of the UWB off body channel in indoor environments,” IEEE Trans. Antennas Propag., Vol. 64, no. 9, pp. 3981–3989, Sep. 2016. DOI:10.1109/TAP.2016.2588582.
  • T. Kumpuniemi, M. Hämäläinen, K. Y. Yazdandoost, and J. Iinatti, “Measurements for body-to-body UWB WBAN radio channels,” in 2015 9th European Conference on Antennas and Propagation (EuCAP), 2015, pp. 1–5.
  • R. Bharadwaj, and S. K. Koul, “Experimental analysis of ultra-wideband body-to-body communication channel characterization in an indoor environment,” IEEE Trans. Antennas Propag., Vol. 67, no. 3, pp. 1779–1789, Mar. 2019. DOI:10.1109/TAP.2018.2883634.
  • S. Yan, P. J. Soh, and G. A. E. Vandenbosch, “Wearable ultrawideband technology—A review of ultrawideband antennas, propagation channels, and applications in wireless body area networks,” IEEE. Access., Vol. 6, pp. 42177–42185, 2018. DOI:10.1109/ACCESS.2018.2861704.
  • A. Fort, C. Desset, P. De Doncker, P. Wambacq, and L. Van Biesen, “An ultra-wideband body area propagation channel model-from statistics to implementation,” IEEE Trans. Microw. Theory Technol., Vol. 54, no. 4, pp. 1820–1826, Jun. 2006. DOI:10.1109/TMTT.2006.872066.
  • M. Särestöniemi, M. Hämäläinen, and J. Iinatti, “An overview of the electromagnetic simulation-based channel modeling techniques for wireless body area network applications,” IEEE. Access., Vol. 5, pp. 10622–10632, 2017. DOI:10.1109/ACCESS.2017.2708161.
  • D. B. Smith, D. Miniutti, T. A. Lamahewa, and L. W. Hanlen, “Propagation models for body-area networks: A survey and new outlook,” IEEE Antennas Propag. Mag., Vol. 55, no. 5, pp. 97–117, Oct. 2013. DOI:10.1109/MAP.2013.6735479.
  • K. Ghanem, “Effect of channel correlation and path loss on average channel capacity of body-to-body systems,” IEEE Trans. Antennas Propag., Vol. 61, no. 12, pp. 6260–6265, Dec. 2013. DOI:10.1109/TAP.2013.2283035.
  • T. Castel, P. Van Torre, L. Vallozzi, M. Marinova, S. Lemey, W. Joseph, C. Oestges, et al., “Capacity of broadband body-to-body channels between firefighters wearing textile SIW antennas,” IEEE Trans. Antennas Propag., Vol. 64, no. 5, pp. 1918–1931, May. 2016. DOI:10.1109/TAP.2016.2535488.
  • S. Sangodoyin, and A. F. Molisch, “A measurement-based model of BMI impact on UWB multi-antenna PAN and B2B channels,” IEEE Trans. Commun., Vol. 66, no. 12, pp. 6494–6510, 2018. DOI:10.1109/TCOMM.2018.2859991.
  • R. Bharadwaj, C. Parini, S. K. Koul, and A. Alomainy, “Influence of spatial distribution of base-stations on off-body path loss statistics for wireless body area network applications,” Wireless Netw., Vol. 27, pp. 4759–4772, 2021. DOI:10.1007/s11276-021-02760-6.
  • A. G. Ferreira, D. Fernandes, S. Branco, A. P. Catarino, and J. L. Monteiro, “Feature selection for real-time NLOS identification and mitigation for body-mounted UWB transceivers,” IEEE Trans. Instrum. Meas., Vol. 70, pp. 1–10, 2021, Art no. 5502310. DOI:10.1109/TIM.2021.3070619.
  • S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “UWB indoor path loss model for residential and commercial buildings,” in 2003 IEEE 58th Vehicular Technology Conference on VTC 2003-Fall (IEEE Cat. No.03CH37484), Vol. 5, pp. 3115–3119, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.