141
Views
1
CrossRef citations to date
0
Altmetric
Computers and computing

Human Muscle Synergy Recruitment and Variability Assessment for Walking Speed Prediction Module Design

ORCID Icon & ORCID Icon

REFERENCES

  • G. M. Jeong, P. H. Truong, and S. Choi, “Classification of three types of walking activities regarding stairs using plantar pressure sensors,” IEEE Sens. J., Vol. 17, no. 9, pp. 2638–9, 2017. doi:10.1109/JSEN.2017.2682322.
  • R. Gupta, and R. Agarwal, “Electromyographic signal-driven continuous locomotion mode identification module design for lower limb prosthesis control,” Arab. J. Sci. Eng., Vol. 43, no. 12, pp. 7817–35, 2018. doi:10.1007/s13369-018-3193-3.
  • F. E. Zajac, R. R. Neptune, and S. A. Kautz, “Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations,” Gait Posture, Vol. 16, pp. 215–32, 2002. doi:10.1016/S0966-6362(02)00068-1.
  • Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, “Five basic muscle activation patterns account for muscle activity during human locomotion,” J. Physiol., Vol. 556, no. 1, pp. 267–82, 2004. doi:10.1113/jphysiol.2003.057174.
  • E. Bizzi, V. C. K. Cheung, A. d’Avella, P. Saltiel, and M. Tresch, “Combining modules for movement,” Brain Res. Rev., Vol. 57, no. 1, pp. 125–33, 2008. doi:10.1016/j.brainresrev.2007.08.004.
  • G. Rasool, K. Iqbal, N. Bouaynaya, and G. White, “Real-time task discrimination for myoelectric control employing task-specific muscle synergies,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 4320, no. c, pp. 1–10, 2015. doi:10.1109/TNSRE.2015.2410176.
  • T. Afzal, K. Iqbal, G. White, and A. Wright, “A method for locomotion mode identification using muscle synergies,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 25, no. 6, pp. 608–17, 2017. doi:10.1109/TNSRE.2016.2585962.
  • A. Santuz, A. Ekizos, L. Janshen, V. Baltzopoulos, and A. Arampatzis, “On the methodological implications of extracting muscle synergies from human locomotion,” Int. J. Neural Syst., Vol. 27, no. 0, p. 1750007, 2017. doi:10.1142/s0129065717500071.
  • S. Li, X. Sheng, H. Liu, and X. Zhu, “Design of a myoelectric prosthetic hand implementing postural synergy mechanically,” Ind. Rob., Vol. 41, no. 5, pp. 447–55, 2014. doi:10.1108/IR-03-2014-0312.
  • J. Ma, N. V. Thakor, and F. Matsuno, “Hand and wrist movement control of myoelectric prosthesis based on synergy,” IEEE Trans. Human-Machine Syst., Vol. 45, no. 1, pp. 74–83, 2015. doi:10.1109/THMS.2014.2358634.
  • F. Hug, N. A. Turpin, A. Couturier, and S. Dorel, “Consistency of muscle synergies during pedaling across different mechanical constraints,” J. Neurophysiol., Vol. 106, no. 1, pp. 91–103, 2011. doi:10.1152/jn.01096.2010.
  • F. Hug, N. A. Turpin, A. Guével, and S. Dorel, “Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies?,” J. Appl. Physiol., Vol. 108, no. 6, pp. 1727–36, 2010. doi:10.1152/japplphysiol.01305.2009.
  • N. A. Turpin, A. Guével, S. Durand, and F. Hug, “Effect of power output on muscle coordination during rowing,” Eur. J. Appl. Physiol., Vol. 111, no. 12, pp. 3017–29, 2011. doi:10.1007/s00421-011-1928-x.
  • A. Saito, A. Tomita, R. Ando, K. Watanabe, and H. Akima, “Muscle synergies are consistent across level and uphill treadmill running,” Sci. Rep., Vol. 8, no. 1, pp. 1–10, 2018. doi:10.1038/s41598-018-24332-z.
  • C. Alessandro, I. Delis, F. Nori, S. Panzeri, and B. Berret, “Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives,” Front. Comput. Neurosci., Vol. 7, no. April, pp. 1–16, 2013. doi:10.3389/fncom.2013.00043.
  • A. Chiavenna, A. Scano, M. Malosio, L. M. Tosatti, and F. Molteni, “Assessing user transparency with muscle synergies during exoskeleton-assisted movements: A pilot study on the LIGHTarm device for neurorehabilitation,” Appl. Bionics Biomech., Vol. 2018, 2018. doi:10.1155/2018/7647562.
  • S. A. Kautz, M. G. Bowden, D. J. Clark, and R. R. Neptune, “Comparison of motor control deficits during treadmill and overground walking poststroke,” Neurorehabil. Neural Repair, Vol. 25, no. 8, pp. 756–65, 2011. doi:10.1177/1545968311407515.
  • J. L. Allen, S. A. Kautz, and R. R. Neptune, “The influence of merged muscle excitation modules on post-stroke hemiparetic walking performance,” Clin. Biomech., Vol. 28, no. 6, pp. 697–704, 2013. doi:10.1016/j.clinbiomech.2013.06.003.
  • D. J. Clark, L. H. Ting, F. E. Zajac, R. R. Neptune, and S. A. Kautz, “Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke,” J. Neurophysiol., Vol. 103, no. 2, pp. 844–57, 2010. doi:10.1152/jn.00825.2009.
  • S. Ferrante, et al., “A personalized multi-channel FES controller based on muscle synergies to support gait rehabilitation after stroke,” Front. Neurosci., Vol. 10, no. Sep, pp. 1–12, 2016. doi:10.3389/fnins.2016.00425.
  • K. E. Zelik, V. La Scaleia, Y. P. Ivanenko, and F. Lacquaniti, “Can modular strategies simplify neural control of multidirectional human locomotion?,” J. Neurophysiol., Vol. 111, no. 8, pp. 1686–1702, 2014. doi:10.1152/jn.00776.2013.
  • F. Lacquaniti, Y. P. Ivanenko, and M. Zago, “Patterned control of human locomotion,” J. Physiol., Vol. 590, no. 10, pp. 2189–99, 2012. doi:10.1113/jphysiol.2011.215137.
  • Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, “Motor control programs and walking,” Neuroscientist, Vol. 12, no. 4, pp. 339–48, 2006. doi:10.1177/1073858406287987.
  • I. S. Dhindsa, R. Agarwal, and H. S. Ryait, “Performance evaluation of various classifiers for predicting knee angle from electromyography signals,” Expert Syst., Vol. 36, no. 3, p. e12381, 2019. doi:10.1111/exsy.12381.
  • R. Gupta, and R. Agarwal, “Single channel EMG-based continuous terrain identification with simple classifier for lower limb prosthesis,” Biocybern. Biomed. Eng., Vol. 39, no. 3, pp. 775–88, 2019. doi:10.1016/j.bbe.2019.07.002.
  • D. D. Lee, and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, Vol. 401, no. 6755, pp. 788–91, 1999. doi:10.1038/44565.
  • M. C. Tresch, “Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets,” J. Neurophysiol., Vol. 95, no. 4, pp. 2199–212, 2006. doi:10.1152/jn.00222.2005.
  • S. Muceli, A. T. Boye, A. d’Avella, and D. Farina, “Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane,” J. Neurophysiol., Vol. 103, no. 3, pp. 1532–42, 2010. doi:10.1152/jn.00559.2009.
  • A. D’Avella, A. Portone, and F. Lacquaniti, “Superposition and modulation of muscle synergies for reaching in response to a change in target location,” J. Neurophysiol., Vol. 106, no. 6, pp. 2796–812, 2011. doi:10.1152/jn.00675.2010.
  • J. Esmaeili, and A. Maleki, “Comparison of muscle synergies extracted from both legs during cycling at different mechanical conditions,” Australas. Phys. Eng. Sci. Med., Vol. 42, no. 3, pp. 827–38, 2019. doi:10.1007/s13246-019-00767-0.
  • C. De Marchis, M. Schmid, D. Bibbo, I. Bernabucci, and S. Conforto, “Inter-individual variability of forces and modular muscle coordination in cycling: a study on untrained subjects,” Hum. Mov. Sci., Vol. 32, no. 6, pp. 1480–94, 2013. doi:10.1016/j.humov.2013.07.018.
  • B. Shuman, M. Goudriaan, L. Bar-On, M. H. Schwartz, K. Desloovere, and K. M. Steele, “Repeatability of muscle synergies within and between days for typically developing children and children with cerebral palsy,” Gait Posture, Vol. 45, pp. 127–32, 2016. doi:10.1016/j.gaitpost.2016.01.011.
  • K. L. Rodriguez, R. T. Roemmich, B. Cam, B. J. Fregly, and C. J. Hass, “Persons with Parkinson’s disease exhibit decreased neuromuscular complexity during gait,” Clin. Neurophysiol., Vol. 124, no. 7, pp. 1390–7, 2013. doi:10.1038/mp.2011.182.
  • M. Kristiansen, A. Samani, P. Madeleine, and E. A. Hansen, “Muscle synergies during bench press are reliable across days,” J. Electromyogr. Kinesiol., Vol. 30, pp. 81–8, 2016. doi:10.1016/j.jelekin.2016.06.004.
  • N. Krouchev, J. F. Kalaska, and T. Drew, “Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition,” J. Neurophysiol., Vol. 96, no. 4, pp. 1991–2010, 2006. doi:10.1152/jn.00241.2006.
  • C. P. Mcgowan, R. R. Neptune, D. J. Clark, and S. A. Kautz, “Modular control of human walking: adaptations to altered mechanical demands,” J. Biomech., Vol. 43, no. 3, pp. 1–15, 2010. doi:10.1016/j.jbiomech.2009.10.009.
  • S. A. Safavynia, and L. H. Ting, “Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations,” J. Neurophysiol., Vol. 107, no. 1, pp. 159–77, 2012. doi:10.1152/jn.00653.2011.
  • C. C. Raasch, and F. E. Zajac, “Locomotor strategy for pedaling: muscle groups and biomechanical functions,” J. Neurophysiol., Vol. 82, no. 2, pp. 515–25, 1999. doi:10.1152/jn.1999.82.2.515.
  • R. R. Neptune, D. J. Clark, and S. A. Kautz, “Modular control of human walking: a simulation study,” J. Biomech., Vol. 42, no. 9, pp. 1282–7, 2009. doi:10.1016/j.jbiomech.2009.03.009.
  • J. L. Allen, and R. R. Neptune, “Three-dimensional modular control of human walking,” J. Biomech., Vol. 45, no. 12, pp. 2157–63, 2012. doi:10.1016/j.jbiomech.2012.05.037.
  • H. J. Chiel, L. H. Ting, O. Ekeberg, and M. J. Z. Hartmann, “The brain in its body: motor control and sensing in a biomechanical context,” J. Neurosci., Vol. 29, no. 41, pp. 12807–14, 2009. doi:10.1523/JNEUROSCI.3338-09.2009.
  • K. P. Granata, D. A. Padua, and M. F. Abel, “Repeatability of surface EMG during gait in children,” Gait Posture, Vol. 22, no. 4, pp. 346–50, 2005. doi:10.1016/j.gaitpost.2004.11.014.
  • D. A. Winter. The Biomechanics and Motor Control of Human Gait, Second. Ontario: University of Waterloo Press, 1987.
  • M. Germanotta, et al., “Spasticity measurement based on tonic stretch reflex threshold in children with cerebral palsy using the pediAnklebot,” Front. Hum. Neurosci., Vol. 11, no. May, pp. 1–11, 2017. doi:10.3389/fnhum.2017.00277.
  • SENIAM. “Sensors location: Recommendations for sensor locations on individual muscles,” 2016. Available: http://seniam.org/sensor_location.htm (accessed Feb. 20, 2020).
  • M. W. Whitmore, S. Member, L. J. Hargrove, and J. Eric, “Gait characteristics when walking on different slippery walkways,” IEEE Trans. Biomed. Eng., Vol. 9294, no. c, pp. 1–12, 2015. doi:10.1109/TBME.2015.2497659.
  • G. Cappellini, Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, “Motor patterns in human walking and running,” J. Neurophysiol., Vol. 95, no. 6, pp. 3426–37, 2006. doi:10.1152/jn.00081.2006.
  • R. Gupta, I. S. Dhindsa, and R. Agarwal, “Continuous angular position estimation of human ankle during unconstrained locomotion,” Biomed. Signal Process. Control, Vol. 60, pp. 101968, 2020. doi:10.1016/j.bspc.2020.101968.
  • S. Hagio, M. Fukuda, and M. Kouzaki, “Identification of muscle synergies associated with gait transition in humans,” Front. Hum. Neurosci., Vol. 9, no. February, pp. 1–12, 2015. doi:10.3389/fnhum.2015.00048.
  • J. Taborri, E. Palermo, D. Masiello, and S. Rossi, “Factorization of EMG via muscle synergies in walking task: Evaluation of intra-subject and inter-subject variability,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2017, pp. 1–6. doi:10.1109/I2MTC.2017.7969775.
  • H. Yokoyama, T. Ogawa, N. Kawashima, M. Shinya, and K. Nakazawa, “Distinct sets of locomotor modules control the speed and modes of human locomotion,” Sci. Rep., Vol. 6, no. September, pp. 1–14, 2016. doi:10.1038/srep36275.
  • S. Hagio, and M. Kouzaki, “The flexible recruitment of muscle synergies depends on the required force-generating capability,” J. Neurophysiol., Vol. 112, no. 2, pp. 316–27, 2014. doi:10.1152/jn.00109.2014.
  • M. Kouzaki, and M. Shinohara, “Steadiness in plantar flexor muscles and its relation to postural sway in young and elderly adults,” Muscle Nerve, Vol. 42, no. 1, pp. 78–87, 2010. doi:10.1002/mus.21599.
  • S. Soman, D. Jayadeva, S. Arjunan, and D. K. Kumar, “Improved sEMG signal classification using the twin SVM,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 – Conference Proceedings, 2017, pp. 4507–12. doi:10.1109/SMC.2016.7844942.
  • H. Pant, S. Soman, Jayadeva, and M. Sharma, “Twin neural networks for efficient EEG signal classification,” in International Joint Conference on Neural Networks, vol. 2018-July, 2018. doi:10.1109/IJCNN.2018.8489352.
  • B. Hudgins, P. Parker, and N. R. Scott, “A new strategy for multifuction myoelectric control,” IEEE Trans. Biomed. Eng., Vol. 40, no. 1, pp. 82–94, 1993.
  • N. Krouchev, and T. Drew, “Motor cortical regulation of sparse synergies provides a framework for the flexible control of precision walking,” Front. Comput. Neurosci., Vol. 7, no. JUN, pp. 1–24, 2013. doi:10.3389/fncom.2013.00083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.