69
Views
1
CrossRef citations to date
0
Altmetric
Control Engineering

Nonlinear Robust Adaptive Sliding Mode Control Strategy for Innate Immune Response to Influenza Virus

, ORCID Icon, , , &

REFERENCES

  • ‘World Health Organization (WHO). Influenza virus infections in humans’, February 2014.
  • H. Schulenburg, C. Kurz, and J. Ewbank, “Evolution of the innate immune system: The worm perspective,” Immunol. Rev., Vol. 198, pp. 36–58, 2004.
  • E. W. Larson, J. W. Dominik, A. H. Rowberg, and G. A. Higbee, “Influenza virus population dynamics in the respiratory tract of experimentally infected mice’,” Infect. Immun., Vol. 13, no. 2, pp. 438–447, 1976.
  • P. Baccam, C. Beauchemin, C. A. Macken, F. G. Hayden, and A. S. Perelson, “Kinetics of influenza A virus infection in humans,” J. Virol., Vol. 80, no. 15, pp. 7590–7599, 2006.
  • A. Boianelli, V. K. Nguyen, T. Ebensen, K. Schulze, E. Wilk, N. Sharma, and M. Meyer-Hermann, “Modeling influenza virus infection: A roadmap for influenza research,” Viruses, Vol. 7, no. 10, pp. 5274–5304, 2015.
  • H. Y. Lee, et al., “Simulation and prediction of the adaptive immune response to influenza a virus infection,” J. Virol., Vol. 83, no. 14, pp. 7151–7165, 2009.
  • B. Hancioglu, D. Swigon, and G. Clermont, “A dynamical model of human immune response to influenza a virus infection,” J. Theor. Biol., Vol. 246, no. 1, pp. 70–86, 2007.
  • S. Almocera, A. E. Nguyen, V. K. Hernandez-Vargas, and E. A, “Multiscale model within-host and between-host for viral infectious diseases,” J. Math. Biol., Vol. 77, pp. 1035–1057, 2017.
  • Z. Abbasi, I. Zamani, A. H. Amiri Mehra, and M. Shafieirad, “Optimal control of SEIR epidemic model considering nonlinear transmission rate and time delay,” in 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA), IEEE, 2021.
  • Z. Abbasi, I. Zamani, A. H. Amiri Mehra, A. Ibeas, and M. Shafieirad, “Optimal allocation of vaccine and antiviral drugs for influenza containment over delayed multi-scale epidemic model considering time-dependent transmission rate,” Comput. Math. Methods. Med., Vol. 2021, pp. 1–27, 2021.
  • A. H. Amiri Mehra, M. Shafieirad, Z. Abbasi, and I. Zamani, “Parameter estimation and prediction of COVID-19 epidemic turning point and ending time of a case study on SIR/SQAIR epidemic models,” Comput. Math. Methods. Med., Vol. 2020, pp. 1–13, 2020.
  • A. H. Amiri Mehra, M. Shafieirad, Z. Abbasi, I. Zamani, and Z. Aarabi, “Fuzzy sliding mode controller design and analysis of an SQEIAR epidemic model for COVID-19 to determine the quarantine rate,” Journal of Control, Vol. 14, no. 5, pp. 59–70, 2021.
  • A. E. S. Almocera, G. Quiroz, and E. A. Hernandez-Vargas, “Stability analysis in COVID-19 within-host model with immune response,” Commun. Nonlinear Sci. Numer. Simul., Vol. 95, pp. 105584, 2021.
  • Z. Abbasi, M. Shafieirad, A. H. Amiri Mehra, and I. Zamani, “Optimized ANFIS-based control design using genetic algorithm to obtain the vaccination and isolation rates for the COVID-19,” in 2021 29th Iranian Conference on Electrical Engineering (ICEE), IEEE, 2021.
  • A. H. Amiri Mehra, M. Shafieirad, Z. Abbasi, and I. Zamani, “Stability analysis of a New switched SEIAR-Vac-Iso epidemic model for the COVID-19,” in 2021 29th Iranian Conference on Electrical Engineering (ICEE), IEEE, 2021.
  • S. Chankan, R. Thienchai, and W. Yukunthorn, “Control theory for HIV dynamics: sliding mode control in antiviral drug therapy,” In Journal of Physics: Conference Series, Vol. 1144, pp. 012070, 2018.
  • A. J. Anelone, Y. Orlov, and S. K. Spurgeon, “Modelling the self-tolerance mechanisms of T cells: An adaptive sliding mode control approach,” in 2014 UKACC International Conference on Control, IEEE, 2014, pp. 573–578.
  • O. Aghajanzadeh, M. Sharifi, S. Tashakori, and H. Zohoor, “Robust adaptive lyapunov-based control of hepatitis B infection,” IET Syst. Biol., Vol. 12, no. 2, pp. 62–67, 2018.
  • O. Aghajanzadeh, M. Sharifi, S. Tashakori, and H. Zohoor, “Nonlinear adaptive control method for treatment of uncertain hepatitis B virus infection,” Biomed. Signal. Process. Control., Vol. 38, pp. 174–181, 2017.
  • P. Rokhforoz, A. A. Jamshidi, and N. N. Sarvestani, “Adaptive robust control of cancer chemotherapy with extended kalman filter observer,” Informatics in Medicine Unlocked, Vol. 8, pp. 1–7, 2017.
  • A. E. Hernandez-Vargas, and M. Meyer-Hermann, “Innate immune system dynamics to influenza virus,” IFAC Proceedings Volumes, Vol. 45, no. 18, pp. 260–265, 2012.
  • R. F. Stengel, R. Ghigliazza, N. Kulkarni, and O. Laplace, “Optimal control of innate immune response,” Optimal Control Applications and Methods, Vol. 23, no. 2, pp. 91–104, 2002.
  • Z. Abbasi, I. Zamani, A. H. Amiri Mehra, M. Shafieirad, and A. Ibeas, “Optimal control design of impulsive SQEIAR epidemic models with application to COVID-19,” Chaos, Solitons Fractals, Vol. 139, pp. 110054, 2020.
  • I. Zamani, A. H. Amiri Mehra, Z. Abbasi, and M. Shafiee, “Robust stability for affine TS fuzzy impulsive control systems subject to parametric uncertainties,” in 2019 27th Iranian Conference on Electrical Engineering (ICEE), IEEE, 2019, pp. 1102–1107.
  • A. T. Azar, and A. E. Hassanien. Modeling, control and drug development for COVID-19 outbreak prevention. Switzerland, AG: Springer, 2022.
  • A. Ibeas, M. de la Sen, and S. Alonso-Quesada, “Robust sliding control of SEIR epidemic models,” Math. Probl. Eng., Vol. 2014, pp. 1–12, 2014.
  • H. Moradi, M. Sharifi, and G. Vossoughi, “Adaptive robust control of cancer chemotherapy in the presence of parametric uncertainties: A comparison between three hypotheses,” Comput. Biol. Med., Vol. 56, pp. 145–157, 2015.
  • A. H. Amiri Mehra, I. Zamani, Z. Abbasi, and A. Ibeas, “Observer-Based adaptive PI sliding mode control of developed uncertain SEIAR influenza epidemic model considering dynamic population,” J. Theor. Biol., Vol. 482, pp. 109984, 2019.
  • A. Ibeas, M. de la Sen, S. Alonso-Quesada, I. Zamani, and M. Shafiee, “Observer design for SEIR discrete-time epidemic models,” in 13th International Conference on Control Automation Robotics & Vision (ICARCV), IEEE, 2014, pp. 1321–1326.
  • A. Ibeas, M. Sen, S. Alonso-Quesada, and I. Zamani, “Stability analysis and observer design for discrete-time SEIR epidemic models,” Adv. Differ. Equ., Vol. 2015, no. 1, pp. 122, 2015.
  • M. Sharifi, A. Jamshidi, and N. N. Sarvestani, “An adaptive robust control strategy in A cancer tumor-immune system under uncertainties,” IEEE/ACM Trans. Comput. Biol. Bioinf., Vol. 16, pp. 865–873, 2018.
  • G. Rimmelzwaan, M. Baars, E. Claas, and A. Osterhaus, “Comparison of RNA hybridization, hemagglutination assay, titration of infectious virus and immunofluorescence as methods for monitoring influenza virus replication in vitro,” J. Virol. Methods, Vol. 74, no. 1, pp. 57–66, 1998.
  • C. A. Beauchemin, and A. Handel, “A review of mathematical models of influenza a infections within a host or cell culture: lessons learned and challenges ahead,” BMC Public Health, Vol. 11, no. 1, pp. 1–15, 2011.
  • J.-J. E. Slotine, and W. Li. Applied nonlinear control. Englewood Cliffs, NJ: Prentice Hall, 1991.
  • L. Möhler, D. Flockerzi, H. Sann, and U. Reichl, “Mathematical model of influenza a virus production in large-scale microcarrier culture,” Biotechnol. Bioeng., Vol. 90, no. 1, pp. 46–58, 2005.
  • R. A. Saenz, et al., “Dynamics of influenza virus infection and pathology,” J. Virol., Vol. 84, no. 8, pp. 3974–3983, 2010.
  • V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, and A. S. Perelson, “Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis,” Bull. Math. Biol., Vol. 56, no. 2, pp. 295–321, 1994.
  • M. Quinlivan, et al., “Pro-Inflammatory and antiviral cytokine expression in vaccinated and unvaccinated horses exposed to equine influenza virus,” Vaccine, Vol. 25, no. 41, pp. 7056–7064, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.