33
Views
0
CrossRef citations to date
0
Altmetric
Computers and Computing

A Deep Belief Network Model for Automatic Atrial Fibrillation Detection

&

References

  • A. Rizwan, et al., “A review on the state of the art in atrial fibrillation detection enabled by machine learning,” IEEE Rev. Biomed. Eng., Vol. 14, pp. 219–239, 2020.
  • O. Faust, A. Shenfield, M. Kareem, T. R. San, H. Fujita, and U. R. Acharya, “Automated detection of atrial fibrillation using long short-term memory network with RR interval signals,” Comput. Biol. Med., Vol. 102, pp. 327–35, 2018.
  • Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ECG signal classification for detection of atrial fibrillation using a novel neural network,” in 2017 computing in Cardiology (CinC), IEEE, 2017, September, pp. 1–4.
  • Z. Mei, X. Gu, H. Chen, and W. Chen, “Automatic atrial fibrillation detection based on heart rate variability and spectral features,” IEEE. Access., Vol. 6, pp. 53566–75, 2018.
  • B. Yu, B. Zhang, L. Xu, P. Fang, and J. Hu. Automatic Detection of Atrial Fibrillation from Ballistocardiogram (BCG) Using Wavelet Features and Machine Learning. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, July, pp. 4322–5. IEEE.
  • M. Nii, T. Iwamoto, S. Okajima, and Y. Tsuchida. Hybridization of standard and fuzzified neural networks from MEMS-based human condition monitoring data for estimating heart rate. In 2016 International Conference on Machine Learning and Cybernetics (ICMLC) (Vol. 1, pp. 1–6), 2016, July. IEEE.
  • P. Bonizzi, K. Driessens, and J. Karel, “Detection of atrial fibrillation episodes from short single lead recordings by means of ensemble learning,” in 2017 computing in cardiology (CinC), IEEE, 2017, September, pp. 1–4.
  • I. H. Bruun, S. M. Hissabu, E. S. Poulsen, and S. Puthusserypady. Automatic atrial fibrillation detection: a novel approach using discrete wavelet transform and heart rate variability. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, July, pp. 3981–4. IEEE.
  • J. A. Gutiérrez-Gnecchi, R. Morfin-Magana, D. Lorias-Espinoza, A. del Carmen Tellez-Anguiano, E. Reyes-Archundia, A. Méndez-Patiño, and R. Castañeda-Miranda, “DSP-based arrhythmia classification using wavelet transform and probabilistic neural network,” Biomed. Signal. Process. Control., Vol. 32, pp. 44–56, 2017.
  • T. M. Chen, C. H. Huang, E. S. Shih, Y. F. Hu, and M. J. Hwang, “Detection and classification of cardiac arrhythmias by a challenge-best deep learning neural network model,” Iscience, Vol. 23, no. 3, pp. 100886, 2020.
  • O. Lahdenoja, et al., “Atrial fibrillation detection via accelerometer and gyroscope of a smartphone,” IEEE. J. Biomed. Health. Inform., Vol. 22, no. 1, pp. 108–18, 2017.
  • K. G. Haeusler, et al., “Expert opinion paper on atrial fibrillation detection after ischemic stroke,” Clin. Res. Cardiol., Vol. 107, no. 10, pp. 871–80, 2018.
  • A. D. William, et al., “Assessing the accuracy of an automated atrial fibrillation detection algorithm using smartphone technology: The iREAD study,” Heart Rhythm, Vol. 15, no. 10, pp. 1561–5, 2018.
  • R. S. Andersen, A. Peimankar, and S. Puthusserypady, “A deep learning approach for real-time detection of atrial fibrillation,” Expert. Syst. Appl., Vol. 115, pp. 465–73, 2019.
  • B. Taji, A. D. Chan, and S. Shirmohammadi, “False alarm reduction in atrial fibrillation detection using deep belief networks,” IEEE Trans. Instrum. Meas., Vol. 67, no. 5, pp. 1124–31, 2017.
  • Z. Zhao, S. Särkkä, and A. B. Rad. Spectro-temporal ECG analysis for atrial fibrillation detection. In 2018 IEEE 28Th international workshop on machine learning for signal processing (MLSP), 2018, September, pp. 1–6. IEEE.
  • F. Hernandez, D. Mendez, L. Amado, and M. Altuve. Atrial fibrillation detection in short single lead ECG recordings using wavelet transform and artificial neural networks. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, July, pp. 5982–5. IEEE.
  • F. Plesinger, P. Nejedly, I. Viscor, J. Halamek, and P. Jurak. Automatic detection of atrial fibrillation and other arrhythmias in holter ECG recordings using rhythm features and neural networks. In 2017 Computing in Cardiology (CinC), 2017, September, pp. 1–4. IEEE.
  • M. Soliński, A. Perka, J. Rosiński, M. Łepek, and J. Rymko. Classification of atrial fibrillation in short-term ECG recordings using a machine learning approach and hybrid QRS detection. In 2017 Computing in Cardiology (CinC), 2017, September, pp. 1–4. IEEE.
  • E. K. Roonizi, and R. Sassi, “An extended Bayesian framework for atrial and ventricular activity separation in atrial fibrillation,” IEEE. J. Biomed. Health. Inform., Vol. 21, no. 6, pp. 1573–80, 2016.
  • H. Dang, M. Sun, G. Zhang, X. Qi, X. Zhou, and Q. Chang, “A novel deep arrhythmia-diagnosis network for atrial fibrillation classification using electrocardiogram signals,” IEEE. Access, Vol. 7, pp. 75577–90, 2019.
  • T. T. Nguyen, T. H. Tran, M. T. Nguyen, and Z. M. Yuldashev, “Heart rhythm intelligent monitoring algorithm for the atrial fibrillation episodes detection in the telemedicine system,” Procedia. Comput. Sci., Vol. 150, pp. 352–60, 2019.
  • W. Jenkal, R. Latif, A. Toumanari, A. Dliou, O. El B’charri, and F. M. Maoulainine, “An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform,” Biocybernetics Biomed. Eng., Vol. 36, no. 3, pp. 499–508, 2016.
  • S. Mejhoudi, R. Latif, W. Jenkal, and A. Elouardi. “Real-time ECG signal denoising using the ADTF algorithm for embedded implementation on FPGAs.” In 2019 4th World Conference on Complex Systems (WCCS), 2019, April, pp. 1–5. IEEE.
  • R. Sundarasekar, M. Thanjaivadivel, G. Manogaran, P. M. Kumar, R. Varatharajan, N. Chilamkurti, and C. H. Hsu, “Internet of things with maximal overlap discrete wavelet transform for remote health monitoring of abnormal ECG signals,” J. Med. Syst., Vol. 42, no. 11, pp. 1–13, 2018.
  • T. Tuncer, S. Dogan, P. Pławiak, and U. R. Acharya, “Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals,” Knowl. Based. Syst., Vol. 186, pp. 104923, 2019.
  • M. Zabihi, A. B. Rad, A. K. Katsaggelos, S. Kiranyaz, S. Narkilahti, and M. Gabbouj. Detection of atrial fibrillation in ECG hand-held devices using a random forest classifier. In 2017 Computing in Cardiology (CinC), 2017, September, pp. 1–4. IEEE.
  • M. Khishe, and M. R. Mosavi, “Chimp optimization algorithm,” Expert. Syst. Appl., Vol. 149, pp. 113338, 2020.
  • F. Murat, et al., “Review of deep learning-based atrial fibrillation detection studies,” Int. J. Environ. Res. Public Health, Vol. 18, no. 21, pp. 11302, 2021.
  • J. Wang, “A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network,” Future Gener. Comput. Syst., Vol. 102, pp. 670–9, 2020.
  • L. Khriji, M. Fradi, M. Machhout, and A. Hossen. Deep learning-based approach for atrial fibrillation detection. In International Conference on Smart Homes and Health Telematics, 2020, June, pp. 100–13. Cham: Springer.
  • M. Jiang, J. Gu, Y. Li, B. Wei, J. Zhang, Z. Wang, and L. Xia, “HADLN: Hybrid attention-based deep learning network for automated arrhythmia classification,” Front. Physiol., Vol. 12, 2021.
  • J. S. Huang, B. Q. Chen, N. Y. Zeng, X. C. Cao, and Y. Li, “Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks,” J. Ambient. Intell. Humaniz. Comput., 1–18, 2020.
  • X. Zhang, J. Li, Z. Cai, L. Zhang, Z. Chen, and C. Liu, “Over-fitting suppression training strategies for deep learning-based atrial fibrillation detection,” Med. Biol. Eng. Comput., Vol. 59, no. 1, pp. 165–73, 2021.
  • B. Tutuko, et al., “Short single-lead ECG signal delineation-based deep learning: Implementation in automatic atrial fibrillation identification,” Sensors, Vol. 22, no. 6, pp. 2329, 2022.
  • L. Tran, Y. Li, L. Nocera, C. Shahabi, and L. Xiong, “Multifusionnet: atrial fibrillation detection with deep neural networks,” AMIA Summits Translational Sci. Proc., Vol. 2020, pp. 654, 2020.
  • D. Kumar, A. Peimankar, K. Sharma, H. Domínguez, S. Puthusserypady, and J. E. Bardram, “Deepaware: A hybrid deep learning and context-aware heuristics-based model for atrial fibrillation detection,” Comput. Methods Programs Biomed., 106899, 2022.
  • C. Y. Chen, et al., “Automated ECG classification based on 1D deep learning network,” Methods, Vol. 202, pp. 127–35, 2022.
  • Z. Ebrahimi, M. Loni, M. Daneshtalab, and A. Gharehbaghi, “A review on deep learning methods for ECG arrhythmia classification,” Expert Syst. Appl.: X, Vol. 7, pp. 100033, 2020.
  • F. Ma, J. Zhang, W. Chen, W. Liang, and W. Yang, “An automatic system for atrial fibrillation by using a CNN-LSTM model,” Discrete. Dyn. Nat. Soc., Vol. 2020, 2020.
  • Y. Jin, C. Qin, J. Liu, K. Lin, H. Shi, Y. Huang, and C. Liu, “A novel domain adaptive residual network for automatic atrial fibrillation detection,” Knowl. Based. Syst., Vol. 203, pp. 106122, 2020.
  • Y. Chen, C. Zhang, C. Liu, Y. Wang, and X. Wan, “Atrial fibrillation detection using a Feedforward Neural Network,” J. Med. Biol. Eng., Vol. 42, no. 1, pp. 63–73, 2022.
  • S. Liao, D. Ragot, S. Nayyar, A. Suszko, Z. Zhang, B. Wang, and V. S. Chauhan, “Deep learning classification of unipolar electrograms in human atrial fibrillation: Application in focal source mapping,” Front. Physiol., Vol. 12, 2021.
  • K. Aschbacher, et al., “Atrial fibrillation detection from raw photoplethysmography waveforms: A deep learning application,” Heart Rhythm O2, Vol. 1, no. 1, pp. 3–9, 2020.
  • N. Henzel, J. Wróbel, and K. Horoba. Atrial fibrillation episodes detection based on classification of heart rate derived features. In 2017 MIXDES-24th International Conference” Mixed Design of Integrated Circuits and Systems, 2017, June, pp. 571–6, IEEE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.