197
Views
2
CrossRef citations to date
0
Altmetric
Power Electronics

Solar Power Estimation Methods Using ANN and CA-ANN Models for Hydrogen Production Potential in Mediterranean Region

References

  • V. Saxena, N. Kumar, B. Singh, and B. K. Panigrahi, “A voltage support control strategy for grid integrated solar PV system during abnormal grid conditions utilizing interweaved GI,” IEEE Trans. Ind. Electron., Vol. 68, no. 9, pp. 8149–8157, 2020. DOI:10.1109/TIE.2020.3013771.
  • V. Saxena, N. Kumar, B. Singh, and B. K. Panigrahi, “A rapid circle centre-line concept-based MPPT algorithm for solar photovoltaic energy conversion systems,” IEEE Trans. Circ. Syst. Regul. Pap., Vol. 68, no. 2, pp. 940–949, 2020. DOI:10.1109/TCSI.2020.3038114.
  • V. Saxena, N. Kumar, B. Singh, and B. K. Panigrahi, “A spontaneous control for grid integrated solar photovoltaic energy conversion systems with voltage profile considerations,” IEEE Trans. Sustain. Energy, Vol. 12, no. 4, pp. 2159–2168, 2021. DOI:10.1109/TSTE.2021.3084103.
  • V. Saxena, N. Kumar, B. Singh, and B. K. Panigrahi, “An MPC based algorithm for a multipurpose grid integrated solar PV system with enhanced power quality and PCC voltage assist,” IEEE Trans. Energy Convers., Vol. 36, no. 2, pp. 1469–1478, 2021. DOI:10.1109/TEC.2021.3059754.
  • V. Saxena, N. Kumar, B. Singh, and B. K. Panigrahi. “An enhanced multilayer GI based control for grid integrated solar PV system,” in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, Dec. 2020, pp. 1–6. DOI:10.1109/PEDES49360.2020.9379446.
  • V. Saxena, N. Kumar, B. Singh, and B. K. Panigrahi. “Control scheme for single phase single stage solar pv energy conversion system,” in 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET), Hyderabad, India, Jan. 2021, pp. 1–5. DOI:10.1109/SeFet48154.2021.9375821.
  • O. Derse, E. Göçmen, E. Yılmaz, and R. Erol, “A mathematical programming model for facility location optimization of hydrogen production from renewable energy sources,” Energy Sourc. Part A Recov. Utiliz. Environ. Eff., 1–12, Aug. 2020. DOI:10.1080/15567036.2020.1812769.
  • D. Akroum-Amrouche, H. Akroum, and H. Lounici, “Green hydrogen production by Rhodobacter sphaeroides,” Energy Sourc. Part A Recov. Utiliz. Environ. Eff., 1–19, Sep. 2019. DOI:10.1080/15567036.2019.1666190.
  • M. Balat, and N. Ozdemir, “New and renewable hydrogen production processes,” Energy Sourc., Vol. 27, no. 13, pp. 1285–1298, Oct. 2005. DOI:10.1080/009083190519564.
  • A. Ursua, L. M. Gandia, and P. Sanchis, “Hydrogen production from water electrolysis: current status and future trends,” Proc. IEEE, Vol. 100, no. 2, pp. 410–426, Feb. 2012. DOI:10.1109/JPROC.2011.2156750.
  • C. A. Grimes, O. K. Varghese, and S. Ranjan, “Hydrogen generation by water splitting,” in Light, C. A. Grimes, O. K. Varghese, and S. Ranjan, Eds., Boston: Springer, 2008, pp. 35–113.
  • J. D. Holladay, J. Hu, D. L. King, and Y. Wang, “An overview of hydrogen production technologies,” Catal. Today, Vol. 139, no. 4, pp. 244–260, Jan. 2009. DOI:10.1016/j.cattod.2008.08.039.
  • X. Wang, et al., “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nature Mater., Vol. 8, no. 1, pp. 76–80, Jan. 2009. DOI:10.1038/nmat2317.
  • O. Khaselev, and J. A. Turner, “A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting,” Science, Vol. 280, no. 5362, pp. 425–427, Apr. 1998. DOI:10.1126/science.280.5362.425.
  • O. Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach,” Int. J. Hydrogen Energy, Vol. 28, no. 1, pp. 21–33, Jan. 2003. DOI:10.1016/S0360-3199(02)00033-2.
  • M. Maruf-ul-Karim, and M. T. Iqbal. “Dynamic modeling and simulation of alkaline type electrolyzers,” in 2009 Canadian Conference on Electrical and Computer Engineering, St. John”s, NL, Canada, May 2009, pp. 711–715. DOI: 10.1109/CCECE.2009.5090222.
  • T. M. Ismail, K. Ramzy, B. E. Elnaghi, M. N. Abelwhab, and M. A. El-Salam, “Using MATLAB to model and simulate a photovoltaic system to produce hydrogen,” Energy Convers. Manage., Vol. 185, pp. 101–129, Apr. 2019. DOI:10.1016/j.enconman.2019.01.108.
  • J. A. Turner, “Sustainable hydrogen production,” Science, Vol. 305, no. 5686, pp. 972–974, Aug. 2004. DOI:10.1126/science.1103197.
  • P.-H. Huang, J.-K. Kuo, and Z.-D. Wu, “Applying small wind turbines and a photovoltaic system to facilitate electrolysis hydrogen production,” Int. J. Hydrogen Energy, Vol. 41, no. 20, pp. 8514–8524, Jun. 2016. DOI:10.1016/j.ijhydene.2016.02.051.
  • J. Turner, et al., “Renewable hydrogen production,” Int. J. Energy Res., Vol. 32, no. 5, pp. 379–407, Apr. 2008. DOI:10.1002/er.1372.
  • M. A. Al-Refai, “Matlab/simulink simulation of solar energy storage system,” Int. J. Electr. Comp. Eng., Vol. 8, no. 2, pp. 6, 2014.
  • S. Sharifian, N. Asasian Kolur, and M. Harasek, “Transient simulation and modeling of photovoltaic-PEM water electrolysis,” Energy Sourc. Part A Recov. Utiliz. Environ. Eff., Vol. 42, no. 9, pp. 1097–1107, May 2020. DOI:10.1080/15567036.2019.1602220.
  • M. Sahin, and H. Okumus, “Fuzzy logic controlled parallel connected synchronous buck DC-DC converter for water electrolysis,” IETE J. Res., Vol. 59, no. 3, pp. 280, 2013. DOI:10.4103/0377-2063.116093.
  • B. D. Mert, F. Ekinci, and T. Demirdelen, “Effect of partial shading conditions on off-grid solar PV/hydrogen production in high solar energy index regions,” Int. J. Hydrogen Energy, Vol. 44, no. 51, pp. 27713–27725, Oct. 2019. DOI:10.1016/j.ijhydene.2019.09.011.
  • T. Demirdelen, F. Ekinci, B. D. Mert, İ Karasu, and M. Tümay, “Green touch for hydrogen production via alkaline electrolysis: The semi-flexible PV panels mounted wind turbine design, production and performance analysis,” Int. J. Hydrogen Energy, Vol. 45, no. 18, pp. 10680–10695, Apr. 2020. DOI:10.1016/j.ijhydene.2020.02.007.
  • G. Peharz, F. Dimroth, and U. Wittstadt, “Solar hydrogen production by water splitting with a conversion efficiency of 18%,” Int. J. Hydrogen Energy, Vol. 32, no. 15, pp. 3248–3252, Oct. 2007. DOI:10.1016/j.ijhydene.2007.04.036.
  • D. Martinez, and R. Zamora, “MATLAB simscape model of an alkaline electrolyser and its simulation with a directly coupled PV module,” Int. J. Renew. Energy Res., Vol. 8, no. 1, pp. 9, 2018.
  • R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, “Application of radial basis neural network in MPPT technique for stand-alone PV system under partial shading conditions,” IETE J. Res., 1–22, Oct. 2021. DOI:10.1080/03772063.2021.1988874.
  • S. N. Mughal, Y. R. Sood, and R. K. Jarial, “A neural network-based time-series model for predicting global solar radiations,” IETE J. Res., 1–13, Jun. 2021. DOI:10.1080/03772063.2021.1934576.
  • P. M. Kumar, R. Saravanakumar, A. Karthick, and V. Mohanavel, “Artificial neural network-based output power prediction of grid-connected semitransparent photovoltaic system,” Environ. Sci. Pollut. Res., Vol. 29, no. 7, pp. 10173–10182, Feb. 2022. DOI:10.1007/s11356-021-16398-6.
  • North China Electric Power University, Y. K. Semero, J. Zhang, North China Electric Power University, D. Zheng, and Goldwind Science and Technology Co., Ltd., “PV power forecasting using an integrated GA-PSO-ANFIS approach and Gaussian process regression based feature selection strategy,” CSEE JPES, Vol. 4, no. 2, pp. 210–218, Jun. 2018. DOI:10.17775/CSEEJPES.2016.01920.
  • F. Almonacid, P. J. Pérez-Higueras, E. F. Fernández, and L. Hontoria, “A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator,” Energy Convers. Manage., Vol. 85, pp. 389–398, Sep. 2014. DOI:10.1016/j.enconman.2014.05.090.
  • F. Touati, et al., “Long-term performance analysis and power prediction of PV technology in the State of Qatar,” Renewable Energy, Vol. 113, pp. 952–965, Dec. 2017. DOI:10.1016/j.renene.2017.06.078.
  • G. Notton, C. Voyant, A. Fouilloy, J. L. Duchaud, and M. L. Nivet, “Some applications of ANN to solar radiation estimation and forecasting for energy applications,” Appl. Sci., Vol. 9, no. 1, pp. 209, Jan. 2019. DOI:10.3390/app9010209.
  • K. Gairaa, A. Khellaf, Y. Messlem, and F. Chellali, “Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: A combined approach,” Renew. Sustain. Energy Rev., Vol. 57, pp. 238–249, May 2016. DOI:10.1016/j.rser.2015.12.111.
  • V. Z. Antonopoulos, D. M. Papamichail, V. G. Aschonitis, and A. V. Antonopoulos, “Solar radiation estimation methods using ANN and empirical models,” Comput. Electron. Agric., Vol. 160, pp. 160–167, May 2019. DOI:10.1016/j.compag.2019.03.022.
  • J. Alonso-Montesinos, et al., “The use of ANN and conventional solar-plant meteorological variables to estimate atmospheric horizontal extinction,” J. Clean. Prod., Vol. 285, pp. 125395, Feb. 2021. DOI:10.1016/j.jclepro.2020.125395.
  • C. Wan, J. Zhao, Y. Song, Z. Xu, J. Lin, and Z. Hu, “Photovoltaic and solar power forecasting for smart grid energy management,” CSEE J. Power Energy Syst., Vol. 1, no. 4, pp. 38–46, Dec. 2015. DOI:10.17775/CSEEJPES.2015.00046.
  • W. Lee, K. Kim, J. Park, J. Kim, and Y. Kim, “Forecasting solar power using long-short term memory and convolutional neural networks,” IEEE Access., Vol. 6, pp. 73068–73080, 2018. DOI:10.1109/ACCESS.2018.2883330.
  • H. Sharadga, S. Hajimirza, and R. S. Balog, “Time series forecasting of solar power generation for large-scale photovoltaic plants,” Renew. Energy, Vol. 150, pp. 797–807, May 2020. DOI:10.1016/j.renene.2019.12.131.
  • M. Pierro, et al., “Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data,” Sol. Energy, Vol. 158, pp. 1026–1038, Dec. 2017. DOI:10.1016/j.solener.2017.09.068.renene.2019.12.131.
  • A. Koca, H. F. Oztop, Y. Varol, and G. O. Koca, “Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey,” Expert. Syst. Appl., Vol. 38, no. 7, pp. 8756–8762, 2011. DOI:10.1016/j.eswa.2011.01.085.
  • M. M. Rahman, et al., “Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks,” Sustainability, Vol. 13, no. 4, pp. 2393, Feb. 2021. DOI:10.3390/su13042393.
  • M. Abdel-Nasser, and K. Mahmoud, “Accurate photovoltaic power forecasting models using deep LSTM-RNN,” Neural Comput. Appl., Vol. 31, no. 7, pp. 2727–2740, Jul. 2019. DOI:10.1007/s00521-017-3225-z.
  • C.-J. Huang, and P.-H. Kuo, “Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting,” IEEE Access., Vol. 7, pp. 74822–74834, 2019. DOI:10.1109/ACCESS.2019.2921238.
  • S. Leva, A. Dolara, F. Grimaccia, M. Mussetta, and E. Ogliari, “Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power,” Math. Comput. Simul., Vol. 131, pp. 88–100, Jan. 2017. DOI:10.1016/j.matcom.2015.05.010.
  • S. A. Haider, M. Sajid, and S. Iqbal, “Forecasting hydrogen production potential in Islamabad from solar energy using water electrolysis,” Int. J. Hydrogen Energy, Vol. 46, no. 2, pp. 1671–1681, Jan. 2021. DOI:10.1016/j.ijhydene.2020.10.059.
  • V. H. Quej, J. Almorox, J. A. Arnaldo, and L. Saito, “ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment,” J. Atmos. Sol. Terr. Phys., Vol. 155, pp. 62–70, Mar. 2017. DOI:10.1016/j.jastp.2017.02.002.
  • L. Visser, T. AlSkaif, and W. van Sark, “Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution,” Renew. Energy, Vol. 183, pp. 267–282, Jan. 2022. DOI:10.1016/j.renene.2021.10.102.
  • M. Talaat, T. Said, M. A. Essa, and A. Y. Hatata, “Integrated MFFNN-MVO approach for PV solar power forecasting considering thermal effects and environmental conditions,” Int. J. Electr. Power Energy Syst., Vol. 135, pp. 107570, Feb. 2022. DOI:10.1016/j.ijepes.2021.107570.
  • B. Shboul, et al., “A new ANN model for hourly solar radiation and wind speed prediction: A case study over the north & south of the Arabian Peninsula,” Sustain. Energy Technol. Assess., Vol. 46, pp. 101248, Aug. 2021. DOI:10.1016/j.seta.2021.101248.
  • S. Yolcular, “Hydrogen production for energy use in European union countries and Turkey,” Energy Sourc. Part A Recov. Utiliz. Environ. Eff., Vol. 31, no. 15, pp. 1329–1337, Aug. 2009. DOI:10.1080/15567030802089615.
  • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, San Diego, 1985.
  • C. A. Coello Coello, and R. L. Becerra, “Efficient evolutionary optimization through the use of a cultural algorithm,” Eng. Optim., Vol. 36, no. 2, pp. 219–236, 2004.
  • C.-H. Je, and H. M. Kim, “A study on the water splitting using polymer electrolyte membrane for producing hydrogen and oxygen,” Int. J. Electrochem. Sci., 6948–6975, Jul. 2019. DOI:10.20964/2019.07.64.
  • M. Gardiner. DOE hydrogen and fuel cells program record# 9013: energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs. Washington, DC: US Department of Energy, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.