147
Views
1
CrossRef citations to date
0
Altmetric
Electronic Circuits, Devices, and Components

Neural Network-based Fast and Intelligent Signal Integrity Assessment Model for Emerging MWCNT Bundle On-Chip Interconnects in Integrated Circuit

, , , , , & show all

REFERENCES

  • Q. Lin, H. Wu, and G. Jia, “Review of the global trend of interconnect reliability for integrated circuit,” Circuits Syst., Vol. 9, no. 2, pp. 9–21, 2018. DOI: 10.4236/cs.2018.92002.
  • International Technology Roadmap for Semiconductors. Available: http://www.itrs2.net.
  • R. Achar, and M. S. Nakhla, “Simulation of high-speed interconnects,” Proc. IEEE, Vol. 89, no. 5, pp. 693–728, 2001. DOI: 10.1109/5.929650.
  • R. Kumar, et al., “A temperature and dielectric roughness-aware matrix rational approximation model for the reliability assessment of copper graphene hybrid on-chip interconnects,” IEEE Trans. Compon Packaging Manuf. Technol., Vol. 10, no. 9, pp. 1454–1465, 2020. DOI: 10.1109/tcpmt.2020.3004414.
  • A. Kumar, and B. Kaushik, “Edge and dielectric surface roughness-aware EM-RA model for MLGNR interconnects,” IEEE Trans. Nanotechnol., Vol. 20, pp. 567–575, 2021. DOI: 10.1109/tnano.2021.3093174.
  • S. Haruehanroengra, and W. Wang, “Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications,” IEEE Electron. Device Lett., Vol. 28, no. 8, pp. 756–759, 2007. DOI: 10.1109/led.2007.901584.
  • A. Naeemi, and J. D. Meindl, “Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems,” IEEE Trans. Electron Devices, Vol. 55, no. 10, pp. 2574–2582, 2008. DOI: 10.1109/ted.2008.2003028.
  • M. Sahoo, P. Ghosal, and H. Rahaman, “Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: An ABCD parameter-based approach,” IEEE Trans. Nanotechnol., Vol. 14, no. 2, pp. 259–274, 2015. DOI: 10.1109/tnano.2014.2388252.
  • R. Mudavath, B. R. Naik, and J. P. Raj, “Evaluation and reduction of signal integrity issues in multiwalled carbon nanotube on-chip VLSI interconnects,” ECS J. Solid State Sci. Technol., Vol. 10, no. 8, pp. 081008, 2021. DOI: 10.1149/2162-8777/ac1c5b.
  • Y. Agrawal, M. G. Kumar, and R. Chandel, “Comprehensive model for high-speed current-mode signaling in next generation MWCNT bundle interconnect using FDTD technique,” IEEE Trans. Nanotechnol., Vol. 15, no. 4, pp. 590–598, 2016. DOI: 10.1109/tnano.2016.2558475.
  • M. Rezaei Khezeli, M. H. Moaiyeri, and A. Jalali, “Comparative analysis of simultaneous switching noise effects in MWCNT bundle and CU power interconnects in CNTFET-based ternary circuits,” IEEE Trans. Very Large Scale Integr VLSI Syst., Vol. 27, no. 1, pp. 37–46, 2019. DOI: 10.1109/tvlsi.2018.2869761.
  • W. C. Elmore, “The transient response of damped linear networks with particular regard to wideband amplifiers,” J. Appl. Phys., Vol. 19, no. 1, pp. 55–63, 1948. DOI: 10.1063/1.1697872.
  • N. Patel, and Y. Agrawal, “A literature review on next generation graphene interconnects,” J. Circuits Syst. Comput., Vol. 28, no. 09, pp. 1930008, 2019. DOI: 10.1142/S0218126619300083.
  • K. Tang, and E. G. Friedman, “Lumped versus distributed RC and RLC interconnect impedances,” in Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, (Cat.No.CH37144), 2000, pp. 136–139. DOI: 10.1109/mwscas.2000.951604.
  • M. Sharma, M. K. Rai, and R. Khanna, “Dielectric surface roughness scattering induced crosstalk performance of coupled MCB interconnects,” Microelectron. J., Vol. 114, pp. 105084, 2021. DOI: 10.1016/j.mejo.2021.105084.
  • F. Liang, G. Wang, and H. Lin, “Modeling of crosstalk effects in multiwall carbon nanotube interconnects,” IEEE Trans. Electromagn. Compat., Vol. 54, no. 1, pp. 133–139, 2012. DOI: 10.1109/temc.2011.2172982.
  • V. R. Kumar, B. K. Kaushik, and A. Patnaik, “An accurate FDTD model for crosstalk analysis of CMOS-gate-driven coupled RLC interconnects,” IEEE Trans. Electromagn. Compat., Vol. 56, no. 5, pp. 1185–1193, 2014. DOI: 10.1109/temc.2014.2305801.
  • M. G. Kumar, Y. Agrawal, and R. Chandel, “Modelling and performance analysis of dielectric inserted side contact multilayer graphene nanoribbon interconnects,” IET Circuits Devices Syst., Vol. 11, no. 3, pp. 232–240, 2017. DOI: 10.1049/iet-cds.2016.0376.
  • D. Černý, and J. Dobeš, “Deep learning neural network algorithm for computation of spice transient simulation of nonlinear time dependent circuits,” Electronics (Basel), Vol. 11, no. 1, pp. 15, 2022. DOI: 10.3390/electronics11010015.
  • O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, Vol. 4, no. 11, pp. e00938, 2018. DOI: 10.1016/j.heliyon.2018.e00938.
  • A. J. Al-Mahasneh, S. G. Anavatti, and M. A. Garratt, “The development of neural networks applications from perceptron to deep learning,” in 2017 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), 2017, pp. 1–6. DOI: 10.1109/icamimia.2017.8387619.
  • P.-W. Liu, W.-S. Zhao, and G. Wang, “A repeater optimization methodology for global multi-walled carbon nanotube interconnects,” in 2019 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 2019, pp. 85–86. DOI: 10.1109/usnc-ursi.2019.8861712.
  • R. Trinchero, P. Manfredi, I.S. Stievano, and F.G. Canavero, “Machine learning for the performance assessment of high-speed links,” IEEE Trans. Electromagn. Compat., Vol. 60, no. 6, pp. 1627–1634, 2018. DOI: 10.1109/temc.2018.2797481.
  • P. Sen, et al., “Neural-network-based parasitic modeling and extraction verification for RF/millimeter-wave integrated circuit design,” IEEE Trans. Microwave Theory Tech., Vol. 54, no. 6, pp. 2604–2614, 2006. DOI: 10.1109/tmtt.2006.872926.
  • Q. Lin, H. Fu, F. He, and Q. Cheng, “Interconnect reliability analysis for power amplifier based on artificial neural networks,” J. Electron. Test., Vol. 32, no. 4, pp. 481–489, 2016. DOI: 10.1007/s10836-016-5606-0.
  • R. Kumar, et al., “Knowledge-based neural networks for fast design space exploration of hybrid copper-graphene on-chip interconnect networks,” IEEE Trans. Electromagn. Compat., Vol. 64, no. 1, pp. 182–195, 2022. DOI: 10.1109/temc.2021.3091714.
  • D. Yang, et al., “CNN-cap: Effective convolutional neural network based capacitance models for full-chip parasitic extraction,” in 2021 IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2021, pp. 1–9. DOI: 10.1109/iccad51958.2021.9643461.
  • M. S. Sarto, and A. Tamburrano, “Single-conductor transmission-line model of multiwall carbon nanotubes,” IEEE Trans. Nanotechnol., Vol. 9, no. 1, pp. 82–92, 2010. DOI: 10.1109/tnano.2009.2023516.
  • Y. Agrawal, R. Chandel, and R. Dhiman, “Variability analysis of stochastic parameters on the electrical performance of on-chip current-mode interconnect system,” IETE. J. Res., Vol. 63, no. 2, pp. 268–280, 2017. DOI: 10.1080/03772063.2016.1257374.
  • V. Venkatraman, and W. Burleson, “Robust multi-level current-mode on-chip interconnect signaling in the presence of process variations,” in Sixth International Symposium on Quality of Electronic Design (ISQED'05), 2005, pp. 522–527. DOI: 10.1109/isqed.2005.107.
  • M. K. Majumder, J. Kumar, and B. K. Kaushik, “Process-induced delay variation in SWCNT, MWCNT, and mixed CNT interconnects,” IETE. J. Res., Vol. 61, no. 5, pp. 533–540, 2015. DOI: 10.1080/03772063.2015.1025110.
  • C. Aggarwal. Outlier analysis. Springer, 2019. DOI: 10.1007/978-1-4614-6396-2.
  • Data Visualization in python with matplotlib and pandas – Stack abuse, 2021. Available: https://stackabuse.com/courses/data-visualization-in-python-with-matplotlib-and-pandas/.
  • D. P. Kingma, and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR-Conference Track Proceedings, 2015, pp. 1–15. DOI: 10.48550/arXiv.1412.6980.
  • A. Gulli, A. Kapoor, and F. Li. Tensorflow Shen du Xue Xi Shi Zhan = tensorflow 1.x deep learning cookbook. Beijing: Ji xie gong ye chu ban she, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.