70
Views
0
CrossRef citations to date
0
Altmetric
Electronic Circuits, Devices, and Components

A DFT Based Approach for NO2 Sensing Using Vander Wall Hetero Monolayer

, , &

References

  • A. Abbasi, and J. J. Sardroodi, “Molecular design of O3 and NO2 sensor devices based on a novel heterostructured N-doped TiO2/ZnO nanocomposite: a van der Waals corrected DFT study,” J. Nanostruct. Chem., Vol. 7, no. 4, pp. 345–358, Nov. 2017. DOI: 10.1007/s40097-017-0244-3.
  • T. W. Hesterberg, W. B. Bunn, R. O. McClellan, A. K. Hamade, C. M. Long, and P. A. Valberg, “Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: evidence for NO2 no-effect levels,” Crit. Rev. Toxicol., Vol. 39, no. 9, pp. 743–781, Oct. 2009. DOI:10.3109/10408440903294945.
  • B. Brunekreef, and S. T. Holgate, “Air pollution and health,” Lancet, Vol. 360, no. 9341, pp. 1233–1242, Oct. 2002. DOI:10.1016/S0140-6736(02)11274-8.
  • W. Yan, Y. Yun, T. Ku, G. Li, and N. Sang, “NO2 inhalation promotes Alzheimer’s disease-like progression: cyclooxygenase- 2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication,” Sci. Rep., Vol. 6, pp. 1–17, Mar. 2016. DOI:10.1038/srep22429.
  • A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, “Carbon monoxide (CO) optical gas sensor based on ZnO thin films,” Sens. Actuat. B Chem., Vol. 250, pp. 679–685, Oct. 2017. DOI:10.1016/j.snb.2017.05.064.
  • H. Wan, H. Yin, L. Lin, X. Zeng, and A. J. Mason, “Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring,” Sens. Actuat. B Chem., Vol. 255, no. Part 1, pp. 638–646, Feb. 2018. DOI:10.1016/j.snb.2017.08.109.
  • A.-M. Andringa, C. Piliego, I. Katsouras, P. W. M. Blom, and D. M. d. Leeuw, “NO2 detection and real-time sensing with field-effect transistors,” Chem. Mater., Vol. 26, no. 1, pp. 773–785, Aug. 2013. DOI:10.1021/cm4020628.
  • J. J. Swanson, W. F. Watts, R. A. Newman, R. R. Ziebarth, and D. B. Kittelson, “Simultaneous reduction of particulate matter and NOx emissions using 4-way catalyzed filtration systems,” Environ. Sci. Technol, Vol. 47, no. 9, pp. 4521–4527, Apr. 2013. DOI:10.1021/es304971h.
  • S.-C. Chang, and J. R. Stetter, “Electrochemical NO2 gas sensors: model and mechanism for the electroreduction of NO2,” Electroanal, Vol. 2, no. 5, pp. 359–365, Jul. 1990. DOI:10.1002/elan.1140020506.
  • B. J. Privett, J. H. Shin, and M. H. Schoenfisch, “Electrochemical sensors,” Analyt. Chem., Vol. 80, no. 12, pp. 4499–4517, May 2008. DOI:10.1021/ac8007219.
  • A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, “NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives,” Sensor Actuat. B Chem., Vol. 171, pp. 25–42, Aug. 2012. DOI:10.1016/j.snb.2012.05.026.
  • G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions, “Metal oxide semi-conductor gas sensors in environmental monitoring,” Sensors, Vol. 10, no. 6, pp. 5469–5502, June 2010. DOI:10.3390/s100605469.
  • H. Cui, K. Zheng, Y. Zhang, H. Ye, and X. Chen, “Superior selectivity and sensitivity of C3 N sensor in probing toxic gases NO2 and SO2,” IEEE Electron Device Lett., Vol. 39, no. 2, pp. 284–287, Dec. 2017. DOI:10.1109/LED.2017.2787788.
  • W. Xia, W. Hu, Z. Li, and J. Yang, “A first-principles study of gas adsorption on germanene,” Phys. Chem. Chem. Phys., Vol. 16, no. 41, pp. 22495–22498, Aug. 2014. DOI:10.1039/C4CP03292F.
  • Y. Cai, Q. Ke, G. Zhang, and Y. W. Zhang, “Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene,” J. Phys. Chem. C, Vol. 119, no. 6, pp. 3102–3110, Jan. 2015. DOI: 10.1021/jp510863p.
  • Y. H. Zhang, Y. B. Chen, K. G. Zhou, C. H. Liu, J. Zeng, H. L. Zhang, and Y. Peng, “Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study,” Nanotechnology, Vol. 20, no. 18, pp. 185504 (1–8), Apr. 2009. DOI:10.1088/0957-4484/20/18/185504.
  • W. Hu, N. Xia, X. Wu, Z. Li, and J. Yang, “Silicene as a highly sensitive molecule sensor for NH3, NO and NO2,” Phys. Chem. Chem. Phys., Vol. 16, no. 15, pp. 6957–6962, Jan. 2014. DOI: 10.1039/C3CP55250K.
  • X. P. Chen, L. M. Wang, X. Sun, R. S. Meng, J. Xiao, H. Y. Ye, and G. Q. Zhang, “Sulfur dioxide and nitrogen dioxide gas sensor based on arsenene: A first-principle study,” IEEE Electron Device Lett., Vol. 38, no. 5, pp. 661–664, Mar. 2017. DOI:10.1109/LED.2017.2684239.
  • F. Ersan, et al., “Two-dimensional pnictogens: A review of recent progresses and future research directions,” Appl. Phys. Rev., Vol. 6, no. 2, pp. 021308 (1–27), Jun. 2019. DOI:10.1063/1.5074087.
  • J. Dai, J. Yuan, and P. Giannozzi, “Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study,” Appl. Phys. Lett., Vol. 95, pp. 232105–232105, Dec. 2009. DOI:10.1063/1.3272008.
  • T. Tran, K. Bray, M. Ford, et al., “Quantum emission from hexagonal boron nitride monolayers,” Nature Nanotech., Vol. 11, no. 1, pp. 37–41, Jan. 2016. DOI:10.1038/nnano.2015.242.
  • K. K. Kim, et al., “Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition,” Nano Lett., Vol. 12, no. 1, pp. 161–166, Dec. 2011. DOI:10.1021/nl203249a.
  • A. Rubio, J. L. Corkill, and M. L. Cohen, “Theory of graphitic boron nitride nanotubes,” Phys. Rev. B, Vol. 49, no. 7, pp. 5081–5084, Feb. 1994. DOI:10.1103/PhysRevB.49.5081.
  • L. Song, et al., “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett., Vol. 10, no. 8, pp. 3209–3215, Jul. 2010. DOI:10.1021/nl1022139.
  • Y. Chen, J. Zou, S. J. Campbell, and G. Le Caer, “Boron nitride nanotubes: pronounced resistance to oxidation,” Appl. Phys. Lett., Vol. 84, no. 13, pp. 2430–2432, Mar. 2004. DOI:10.1063/1.1667278.
  • X. F. Jiang, Q. Weng, X. B. Wang, X. Li, J. Zhang, D. Golberg, and Y. Bando, “Recent progress on fabrications and applications of boron nitride nanomaterials: a review,” J. Mater. Sci. Technol., Vol. 31, no. 6, pp. 589–598, Jun. 2015. DOI:10.1016/j.jmst.2014.12.008.
  • E. Vessally, F. Behmagham, B. Massuomi, A. Hosseinian, and K. Nejati, “Selective detection of cyanogen halides by BN nanocluster: a DFT study,” J. Mol. Model., Vol. 23, no. 4, pp. 138 (1–9), Apr. 2017. DOI:10.1007/s00894-017-3312-1.
  • W. Yang, L. Gan, H. Li, and T. Zhai, “Two-dimensional layered nanomaterials for gas-sensing applications,” Inorg. Chem. Front., Vol. 3, no. 4, pp. 433–451, Jan. 2016. DOI: 10.1039/C5QI00251F.
  • L. Li, S. He, M. Liu, C. Zhang, and W. Chen, “Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature,” Anal. Chem., Vol. 87, no. 3, pp. 1638–1645, Jan. 2015. DOI: 10.1021/ac503234e.
  • R. Bhowmick, and S. Sen, “Spin-crossover assisted spin-switching and rectification action in half-metallic graphitic carbon nitride (g-C4N3),” ChemPhysChem, Vol. 20, no. 3, pp. 436–442, Feb. 2019. DOI:10.1002/cphc.201800941.
  • S. Tomić, B. Montanari, and N. M. Harrison, “The group III–V's semiconductor energy gaps predicted using the B3LYP hybrid functional,” Physica E: Low-dim. Syst. Nanostruct., Vol. 40, no. 6, pp. 2125–2127, Apr. 2008. DOI:10.1016/j.physe.2007.10.022.
  • J. Dai, J. Yuan, and P. Giannozzi, “Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study,” Appl. Phys. Lett., Vol. 95, no. 23, pp. 232105 (1–3), Dec. 2009. DOI:10.1063/1.3272008.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., Vol. 77, no. 18, pp. 3865–3868, 1996. DOI:10.1103/PhysRevLett.77.3865.
  • S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem, Vol. 27, no. 15, pp. 1787–1799, Nov. 2016. DOI:10.1002/jcc.20495.
  • A. Singh, P. Basera, S. Saini, M. Kumar, and S. Bhattacharya, “Importance of many-body dispersion in the stability of vacancies and antisites in free-standing monolayer of MoS2 from first principles approaches,” J. Phys. Chem. C, Vol. 124, no. 2, pp. 1390–1397, 2020. DOI: 10.1021/acs.jpcc.9b09396.
  • S. Saini, P. Basera, E. Arora, and S. Bhattacharya, “Unraveling thermodynamic stability, catalytic activity, and electronic structure of [TMxMgyOz]+/0/– clusters at realistic conditions: A hybrid DFT and ab initio thermodynamics study,” J. Phys. Chem. C, Vol. 123, no. 25, pp. 15495–15502, 2019. DOI: 10.1021/acs.jpcc.9b01619.
  • B. Huang, and H. Lee, “Defect and impurity properties of hexagonal boron nitride: A first-principles calculation,” Phys. Rev. B, Vol. 86, pp. 245406 (1–8), Dec. 2012. DOI:10.1103/PhysRevB.86.245406.
  • S. S. R. K. C. Yamijala, and S. K. Pati, “Electronic and magnetic properties of zigzag boron-nitride nanoribbons with even and odd-line stone-Wales (5-7 pair) defects,” J. Phys. Chem. C, Vol. 117, no. 7, pp. 3580–3594, Jun 2013. DOI:10.1021/jp310614u.
  • V. Barone, and J. E. Peralta, “Magnetic boron nitride nanoribbons with tunable electronic properties,” Nano Lett., Vol. 8, no. 8, pp. 2210–2214, 2008. DOI: 10.1021/nl080745j.
  • K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nat. Mater., Vol. 3, no. 6, pp. 404–409, Jun. 2004. DOI:10.1038/nmat1134.
  • J. Zhao, and Z. Chen, “Carbon-doped boron nitride nanosheet: an efficient metal-free electrocatalyst for the oxygen reduction reaction,” J. Phys. Chem. C, Vol. 119, pp. 26348–26354, 2015.
  • H. S. Kang, et al., “Smart manufacturing: past research, present findings, and future directions,” Intern. J. Precis. Eng. Manufact. Green Technol., Vol. 3, no. 1, pp. 111–128, Jan. 2016. DOI:10.1007/s40684-016-0015-5.
  • R. Wang, J. Yang, X. Wu, and S. Wang, “Local charge states in hexagonal boron nitride with Stone-Wales defects,” Nanoscale., Vol. 8, no. 15, pp. 8210–8219, 2016 Apr 21. doi:10.1039/c5nr09099g. PMID: 27030259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.