296
Views
14
CrossRef citations to date
0
Altmetric
Computers and Computing

A Unified Lightweight CNN-based Model for Disease Detection and Identification in Corn, Rice, and Wheat

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Agri share in GDP hit 20% after 17 years: Economic Survey. Available: https://www.downtoearth.org.in/news/agriculture/agri-share-in-gdp-hit-20-after-17-years-economic-survey-75271, accessed Aug. 2021.
  • India – Employment in Agriculture (% of total Employment). Available: India – Employment In Agriculture (% Of Total Employment) – 2022 Data 2023 Forecast 1991-2020 Historical (tradingeconomics.com), accessed Aug. 2021.
  • United Nations. Available: https://www.un.org/en/global-issues/population, accessed, Nov. 2021.
  • Global Burden of Crop Loss. Available: https://www.cabi.org/projects/global-burden-of-crop-loss/, accessed, Feb. 2022.
  • M. Kumar, A. Kumar, and V. S. Palaparthy, “Soil sensors based prediction system for plant diseases using exploratory data analysis and machine learning,” IEEE Sensors J., Vol. 21, no. 16, pp. 17455–68, Dec. 2020. DOI: 10.1109/JSEN.2020.3046295
  • G. Nagasubramanian, R. K. Sakthivel, R. Patan, M. Sankayya, M. Daneshmand, and A. H. Gandomi, “Ensemble classification and IoT based pattern recognition for crop disease monitoring system,” IEEE Internet Things J., Vol. 8, no. 16, pp. 12847–54, Apr. 2021. DOI: 10.1109/JIOT.2021.3072908
  • S. Abisha, and T. Jayasree, “Application of image processing techniques and artificial neural network for detection of diseases on brinjal leaf,” IETE. J. Res., 1–13, Dec. 2019. DOI:10.1080/03772063.2019.1696716
  • C. P. B. Elizabeth, and S. Baulkani, “Novel network for medicinal leaves identification,” IETE. J. Res., Vol. 68, 1–11, Jan. 2022. DOI: 10.1080/03772063.2021.2016504
  • K. P. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” Comput. Electron. Agric., Vol. 145, pp. 311–8, Feb. 2018. DOI: 10.1016/j.compag.2018.01.009
  • C. R. Rahman, P. S. Arko, M. E. Ali, M. A. I. Khan, S. H. Apon, F. Nowrin, and A. Wasif, “Identification and recognition of Rice diseases and pests using convolutional neural networks,” Biosystems Eng., Vol. 194, pp. 112–20, Jun. 2020. DOI: 10.1016/j.biosystemseng.2020.03.020
  • X. B. Jin, X. H. Yu, X. Y. Wang, Y. T. Bai, T. L. Su, and J. L. Kong, “Deep learning predictor for sustainable precision agriculture based on internet of things system,” Sustainability, Vol. 12, no. 4, pp. 1–18, Jan. 2020. DOI: 10.3390/su12041433
  • A. Sinha, G. Shrivastava, and P. Kumar, “Architecting user-centric internet of things for smart agriculture,” Sustainable Comput.: Informatics Sys., Vol. 23, pp. 88–102, Sep. 2019. DOI: 10.1016/j.suscom.2019.07.001
  • Area harvested for crop production worldwide in 2019, by product (in million hectares). Available: https://www.statista.com/statistics/1260473/harvested-area-by-crop-worldwide/, accessed Feb. 2022
  • J. Qiu, X. Lu, X. Wang, and X. Hu, “Research on Rice disease identification model based on migration learning in VGG network,” IOP Con. Series: Earth Environ. Sci., Vol. 680, no. 1, pp. 1–10, Mar. 2021. DOI: 10.1088/1755-1315/680/1/012087
  • K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, Sep. 2014.
  • M. Genaev, S. Ekaterina, and D. Afonnikov. “Application of neural networks to image recognition of Wheat rust diseases,” in 2020 Cognitive Sciences, Genomics and Bioinformatics, Russia, Jul. 2020, pp. 40–42.
  • G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, 2017, pp. 4700–8.
  • O. Russakovsky, et al., “Imagenet large scale visual recognition challenge,” Int. J. Comput. Vision, Vol. 115, no. 3, pp. 211–52, Dec. 2015. DOI: 10.1007/s11263-015-0816-y
  • X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, “Identification of maize leaf diseases using improved deep convolutional neural networks,” IEEE. Access., Vol. 6, pp. 30370–7, Jun. 2018. DOI: 10.1109/ACCESS.2018.2844405
  • The digital dream: Upskilling India for the future. Available: https://www.ideasforindia.in/topics/governance/the-digital-dream-upskilling-india-for-the-future.html, accessed, Feb. 2022.
  • K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, 2016, pp. 770–8.
  • K. He, X. Zhang, S. Ren, and J. Sun. “Identity mappings in deep residual networks,” in European Conference on Computer Vision, Amsterdam, The Netherlands, 2016, pp. 630–45.
  • M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen. “Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Oct. 2018, pp. 4510–45.
  • C. Szegedy, et al. “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015, pp. 1–9.
  • F. Chollet. “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, 2017, pp. 1251–8.
  • P. Chhabra, N. K. Garg, and M. Kumar, “Content-based image retrieval system using ORB and SIFT features,” Neural Comput. Appl., Vol. 32, no. 7, pp. 2725–33, 2020. DOI: 10.1007/s00521-018-3677-9
  • D. Garg, N. K. Garg, and M. Kumar, “Underwater image enhancement using blending of CLAHE and percentile methodologies,” Multimed. Tools. Appl., Vol. 77, no. 20, pp. 26545–61, 2018. DOI: 10.1007/s11042-018-5878-8
  • S. Gupta, N. Mohan, and M. Kumar, “A study on source device attribution using still images,” Arch. Comput.Methods Eng., Vol. 28, no. 4, pp. 2209–23, 2021. DOI: 10.1007/s11831-020-09452-y
  • K. Shaheed, A. Mao, I. Qureshi, M. Kumar, S. Hussain, I. Ullah, and X. Zhang, “DS-CNN: A pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognition,” Expert. Syst. Appl., Vol. 191, pp. 1–18, 2022. DOI: 10.1016/j.eswa.2021.116288
  • M. Kumar, and M. Kumar, “XGBoost: 2D-object recognition using shape descriptors and extreme gradient boosting classifier,” Comput. Methods Data Eng., Vol. 1, 207–22, 2021. DOI:10.1007/978-981-15-6876-3_16
  • M. Bansal, M. Kumar, M. Kumar, and K. Kumar, “An efficient technique for object recognition using Shi-Tomasi corner detection algorithm,” Soft. Comput., Vol. 25, no. 6, pp. 4423–32, 2021. DOI: 10.1007/s00500-020-05453-y
  • M. Kumar, S. Gupta, X. Z. Gao, and A. Singh, “Plant species recognition using morphological features and adaptive boosting methodology,” IEEE. Access., Vol. 7, pp. 163912–8, 2019. DOI: 10.1109/ACCESS.2019.2952176
  • N. Ganatra, and A. Patel, “Performance analysis of fine-tuned convolutional neural network models for plant disease classification,” Int. J. Control Autom., Vol. 13, no. 3, pp. 293–305, 2020.
  • Plant Village Dataset. Available: https://www.tensorflow.org/datasets/catalog/plant_village, accessed, Nov. 2021.
  • M. H. Saleem, J. Potgieter, and K. M. Arif, “Plant disease classification: A comparative evaluation of convolutional neural networks and deep learning optimizers,” Plants, Vol. 9, no. 10, pp. 1–16, Oct. 2020. DOI: 10.3390/plants9101319
  • Q. Zeng, X. Ma, B. Cheng, E. Zhou, and W. Pang, “GANS-based data augmentation for citrus disease severity detection using deep learning,” IEEE. Access., Vol. 8, pp. 172882–91, Sep. 2020. DOI: 10.1109/ACCESS.2020.3025196
  • L. Ma, R. Shuai, X. Ran, W. Liu, and C. Ye, “Combining DC-GAN with ResNet for blood cell image classification,” Med. Biol. Eng. Comput., Vol. 58, no. 6, pp. 1251–64, Jun. 2020. DOI: 10.1007/s11517-020-02163-3
  • C. Zhou, S. Zhou, J. Xing, and J. Song, “Tomato leaf disease identification by restructured deep residual dense network,” IEEE. Access., Vol. 9, pp. 28822–31, Feb. 2021. DOI: 10.1109/ACCESS.2021.3058947
  • U. P. Singh, S. S. Chouhan, S. Jain, and S. Jain, “Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease,” IEEE. Access., Vol. 7, pp. 43721–9, Mar. 2019. DOI: 10.1109/ACCESS.2019.2907383
  • A. Sembiring, Y. Away, F. Arnia, and R. Muharar, “Development of concise convolutional neural network for tomato plant disease classification based on leaf images,” J. Phys: Conf. Ser., Vol. 1845, no. 1, pp. 1–7, Mar. 2021. DOI: 10.1088/1742-6596/1845/1/012009
  • A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in Corn leaf,” Comput. Electron. Agric., Vol. 175, pp. 1–11, Aug. 2020. DOI: 10.1016/j.compag.2020.105456
  • R. A. Priyadharshini, S. Arivazhagan, M. Arun, and A. Mirnalini, “Maize leaf disease classification using deep convolutional neural networks,” Neural Comput. Appl., Vol. 31, no. 12, pp. 8887–95, Dec. 2019. DOI: 10.1007/s00521-019-04228-3
  • A. Rath, and J. Meher, “Disease detection in infected plant leaf by computational method,” Arch. Phytopathology Plant Prot, Vol. 52, no. 19–20, pp. 1348–58, Dec. 2019. DOI: 10.1080/03235408.2019.1708546
  • J. Chen, D. Zhang, Y. A. Nanehkaran, and D. Li, “Detection of Rice plant diseases based on deep transfer learning,” J. Sci. Food Agric., Vol. 100, no. 7, pp. 3246–56, May. 2020. DOI: 10.1002/jsfa.10365
  • M. A. Azim, M. K. Islam, M. M. Rahman, F. Jahan, et al., “An effective feature extraction method for Rice leaf disease classification,” Telkomnika, Vol. 19, no. 2, pp. 463–70, Apr. 2021. DOI: 10.12928/telkomnika.v19i2.16488
  • H. B. Prajapati, J. P. Shah, and V. K. Dabhi, “Detection and classification of Rice plant diseases,” Intell. Decis. Technol., Vol. 11, no. 3, pp. 357–73, Jan. 2017. DOI: 10.3233/IDT-170301
  • S. Ghosal, and K. Sarkar. “Rice leaf diseases classification using CNN with transfer learning,” in 2020 IEEE Calcutta Conference (CALCON), Kolkata, India, Feb. 2020, pp. 230–6.
  • Z. Lin, S. Mu, F. Huang, K. A. Mateen, M. Wang, W. Gao, and J. Jia, “A unified matrix-based convolutional neural network for fine-grained image classification of Wheat leaf diseases,” IEEE. Access., Vol. 7, pp. 11570–90, Jan. 2019. DOI: 10.1109/ACCESS.2019.2891739
  • S. Lingwal, K. K. Bhatia, and M. S. Tomer, “Image-based wheat grain classification using convolutional neural network,” Multimed. Tools. Appl., Vol. 80, no. 28, pp. 1–25, Nov. 2021. DOI:10.1007/s11042-020-10174-3
  • A. G. Howard, et al., “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, Apr. 2017.
  • Rice Leafs. Available: https://www.kaggle.com/datasets/shayanriyaz/Riceleafs, accessed Nov. 2021.
  • Wheat Leaf Dataset. Available: https://www.kaggle.com/datasets/olyadgetch/Wheat-leaf-dataset, accessed Nov. 2021.
  • CGIAR Computer Vision for Cop Disease. Available: https://www.kaggle.com/datasets/shadabhussain/cgiar-computer-vision-for-crop-disease, accessed Nov. 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.