107
Views
0
CrossRef citations to date
0
Altmetric
Power Electronics

Frequency Stability of a Wind-based Energy System by Virtual Inertia Controller of an Inverter Connected to Grid

& ORCID Icon

REFERENCES

  • S. Hurtado, et al., “A new power stabilization control system based on making use of mechanical inertia of a variable-speed wind turbine for stand-alone wind-diesel applications,” in IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, vol. 4, Sevilla, 2002, pp. 3326–3331. doi:10.1109/IECON.2002.1182931.
  • W. Guo, F. Liu, J. Si, and S. Mei, “Incorporating approximate dynamic programming-based parameter tuning into PD-type virtual inertia control of DFIGs,” in The 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, 2013, pp. 1–8. doi:10.1109/IJCNN.2013.6707069.
  • C. Lv, T. Littler, and W. Du, “Damping torque analysis of virtual inertia control for DFIG-based wind turbines,” in 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, 2015, pp. 1992–1997. doi:10.1109/DRPT.2015.7432565.
  • T. Kerdphol, F. S. Rahman, Y. Mitani, M. Watanabe, and S. K. Küfeoğlu, “Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy,” IEEE. Access., Vol. 6, pp. 625–636, 2018. doi:10.1109/ACCESS.2017.2773486.
  • M. H. Ravanji, and M. Parniani. “Modified virtual inertial controller for prudential participation of DFIG-based wind turbines in power system frequency regulation,” IET 2018. doi:10.1049/uet-rpg.2018.5397.
  • C. Sun, S. Q. Ali, G. Joos, and F. Bouffard, “Improved VSG control for Type-IV wind turbine generator considering operation limitations,” in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019, pp. 2085–2091. doi:10.1109/ECCE.2019.8912663.
  • T. Li, H. Cui, R. Pan, and L. Wang, “VSG virtual inertial control strategy based on lead-lag link and fuzzy logic control,” in 2019 Chinese Automation Congress (CAC), Hangzhou, People’s Republic of China, 2019, pp. 5684–5689. doi:10.1109/CAC48633.2019.8997450.
  • L. Xiong, P. Li, F. Wu, and J. Wang, “Stability enhancement of power systems with high DFIG-wind turbine penetration via virtual inertia planning,” IEEE Trans. Power Syst., Vol. 34, no. 2, pp. 1352–1361, Mar. 2019. doi:10.1109/TPWRS.2018.2869925.
  • A. Luna, U. Tamrakar, R. Tonkoski, and S. Hietpas, “Linear quadratic regulator controller to improve transient frequency stability through virtual inertia,” in 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2020, pp. 1–5. doi:10.1109/ISGT45199.2020.9087755.
  • L. Haifeng, W. Fan, J. Tao, and X. Guoyi, “Parameter tuning method of virtual inertia controller of wind turbines considering wind power fluctuation,” in 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, People’s Republic of China, 2020, pp. 533–537. doi:10.1109/ACPEE48638.2020.9136385.
  • J. C. Martínez, S. A. Gómez, J. L. Rodríguez Amenedo, and J. Alonso-Martínez, “Analysis of the frequency response of wind turbines with virtual inertia control,” in 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 2020, pp. 1–6. doi:10.1109/EEEIC/ICPSEurope49358.2020.9160718.
  • J. Han, Z. Liu, and N. Liang, “Nonlinear adaptive robust control strategy of doubly Fed induction generator based on virtual synchronous generator,” IEEE. Access., Vol. 8, pp. 159887–159896, 2020. doi:10.1109/ACCESS.2020.2994094.
  • X. Wang, and W. Du, “Virtual inertia control of grid-connected wind farms,” in International Conference on Renewable Power Generation (RPG 2015), Beijing, 2015, pp. 1–6. doi:10.1049/cp.2015.0469.
  • K. Mahapatra, and P. K. Dash, “Inertia emulation based sliding mode control of VSC HVDC system for transmission of power from onshore wind farms to AC grids,” in 2015 IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar, India, 2015, pp. 522–528. doi:10.1109/PCITC.2015.7438221.
  • S. Saadatmand, M. S. S. Nia, P. Shamsi, M. Ferdowsi, and D. C. Wunsch, “Neural network predictive controller for grid-connected virtual synchronous generator,” in 2019 North American power symposium (NAPS), Wichita, KS, USA, 2019, pp. 1–6. doi:10.1109/NAPS46351.2019.9000386.
  • A. O. Aluko, D. G. Dorrell, R. Pillay-Carpanen, and E. E. Ojo, “Frequency control of modern multi-area power systems using fuzzy logic controller,” in 2019 IEEE PES/IAS PowerAfrica, Abuja, Nigeria, 2019, pp. 645–649. doi:10.1109/PowerAfrica.2019.8928641.
  • A. K. Barik, S. Jaiswal, and D. C. Das, “Recent trends and development in hybrid microgrid: a review on energy resource planning and control,” Int. J. Sustainable Energy, 2021. doi:10.1080/14786451.2021.1910698.
  • A. K. Barik, D. C. Das, A. Latif, S. M. S. Hussain, and T. S. Ustun, “Optimal voltage–frequency regulation in distributed sustainable energy-based hybrid microgrids with integrated resource Planning,” Energies Vol. 14, no. 10, p. 2735. doi:10.3390/en14102735.
  • T. Kerdphol, F. S. Rahman, Y. Mitani, and M. Watanabe. “Virtual inertia synthesis and control,” ISSN 1612- Power systems ISBN 978-3-030-57960-9. doi:10.1007/978-3-030-57961-6.
  • K. Harisha, and V. N. Jayasankar, “Virtual inertia controller for the grid interfacing inverter of wind energy system,” in 2021 Asian Conference on Innovation in Technology (ASIANCON), PUNE, India, 2021, pp. 1–9. doi:10.1109/ASIANCON51346.2021.9544950.
  • V. Y. Singarao, and V. S. Rao. Frequency responsive services by wind generation resources in United States. National Wind Institute, Texas Tech University, 2016. doi:10.1016/j.rser.2015.11.011.
  • U. Tamarkar, D. Shrestha, M. Maharjan, B. P. Bhattarai, T. M. Hansen, and R. Tonkoski, “Virtual inertia: current trends and future directions,” Appl. Sci., Vol. 7, p. 654, 2017. doi:10.3390/app7070654.
  • D. Singh, and K. Seethalekshmi, “A review on various virtual inertia techniques for distributed generation,” in 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 2020, pp. 631–638.
  • A. Dadhania, B. Venkatesh, A. B. Nassif, and V. K. Sood, “Modeling of doubly fed induction generators for distribution system power flow analysis,” Int. J. Electr. Power Energy Syst., Vol. 53, pp. 576–583, Dec. 2013. doi:10.1016/j.ijepes.2013.05.025.
  • I. A. Gowaid, A. El-Zawawi, and M. El-Gammal, “Improved inertia and frequency support from grid-connected DFIG wind farms,” in 2011 IEEE/PES Power Systems Conference and Exposition, 2011, pp. 1–9. doi:10.1109/PSCE.2011.5772589.
  • X. Yan, Z. Song, Y. Xu, Y. Sun, Z. Wang, and X. Sun, “Study of inertia and damping characteristics of doubly Fed induction generators and improved additional frequency control strategy,” Energies, Vol. 12, p. 38, 2019. doi:10.3390/en12010038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.