223
Views
0
CrossRef citations to date
0
Altmetric
Electromagnetics

Gain Enhancement of Millimeter Wave Antenna by Ultra-thin Radial Phase Gradient Metasurface for 5G Applications

&

References

  • H. A. Diawuo, and Y. B. Jung, “Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications,” IEEE Antennas Wirel. Propag. Lett., Vol. 17, no. 7, pp. 1286–1290, Jul. 2018.
  • J. Zeng, and K. Luk, “Single-layered broadband magnetoelectric dipole antenna for new 5G application,” IEEE Antennas Wirel. Propag. Lett., Vol. 18, no. 5, pp. 911–915, May 2019.
  • V. P. Sarin, M. S. Nishamol, D. Tony, C. K. Aanandan, P. Mohanan, and K. Vasudevan, “A broadband $L$-strip fed printed microstrip antenna,” IEEE Trans. Antennas Propag., Vol. 59, no. 1, pp. 281–284, Jan. 2011.
  • H. Wang, S. Liu, L. Chen, W. Li, and X. Shi, “Gain enhancement for broadband vertical planar printed antenna with H-shaped resonator structures,” IEEE Trans. Antennas Propag., Vol. 62, no. 8, pp. 4411–4415, Aug. 2014.
  • A. Rivera-Albino, and C. A. Balanis, “Gain enhancement in microstrip patch antennas using hybrid substrates,” IEEE Antennas Wirel. Propag. Lett., Vol. 12, pp. 476–479, 2013.
  • A. Dadgarpour, A. Kishk, and T. A. Denidni, “Gain enhancement of planar antenna enabled by array of split-ring resonators,” IEEE Trans. Antennas Propag., Vol. 64, no. 8, pp. 3682–3687, Aug. 2016.
  • J. H. Kim, C. H. Ahn, and J. K. Bang, “Antenna gain enhancement using a Holey superstrate,” IEEE Trans. Antennas Propag., Vol. 64, no. 3, pp. 1164–1167, Mar. 2016.
  • H. Boutayeb, and T. A. Denidni, “Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate,” IEEE Trans. Antennas Propag., Vol. 55, no. 11, pp. 3140–3145, Nov. 2007.
  • A. Swetha, and K. Rama Naidu, “Gain enhancement of an UWB antenna based on a FSS reflector for broadband applications,” Prog. Electromagn. Res. C, Vol. 99, pp. 193–208, 2020.
  • S. Maity, T. Tewary, S. Mukherjee, A. Roy, P. P. Sarkar, and S. Bhunia, “Wideband hybrid microstrip patch antenna and gain improvement using frequency selective surface,” Int. J. Commun Syst, Vol. 35, no. 14, pp. e5268, 2022.
  • D. D. Nguyen, and C. Seo, “A wideband high gain trapezoidal monopole antenna backed by frequency selective surface,” Microw. Opt. Technol. Lett., Vol. 63, pp. 2392–2399, 2021.
  • S. Rajasri, and R. B. Rani, “CPW-fed octagonal-shaped metamaterial-inspired multiband antenna on frequency selective surface for gain enhancement,” Appl. Phys. A, Vol. 128, p. 594, 2022.
  • Y. Chen, L. Chen, J. Yu, and X. Shi, “A C-band flat lens antenna with double-ring slot elements,” IEEE Antennas Wirel. Propag. Lett., Vol. 12, pp. 341–344, 2013.
  • A. Dhouibi, S. N. Burokur, A. de Lustrac, and A. Priou, “Compact metamaterial-based substrate-integrated luneburg lens antenna,” IEEE Antennas Wirel. Propag. Lett., Vol. 11, pp. 1504–1507, 2012.
  • R. Weily, and N. Nikolic, “Dual-polarized planar feed for low-profile hemispherical luneburg lens antennas,” IEEE Trans. Antennas Propag., Vol. 60, no. 1, pp. 402–407, Jan. 2012.
  • Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, “A half Maxwell fish-eye lens antenna based on gradient-index metamaterials,” IEEE Trans. Antennas Propag., Vol. 60, no. 1, pp. 398–401, Jan. 2012.
  • Z. Tao, D. Bao, H. X. Xu, H. F. Ma, W. X. Jiang, and T. J. Cui, “A millimeter-wave system of antenna array and metamaterial lens,” IEEE Antennas Wirel. Propag. Lett., Vol. 15, pp. 370–373, 2016.
  • A. K. Singh, M. P. Abegaonkar, and S. K. Koul, “Wide angle beam steerable high gain flat top beam antenna using graded index metasurface lens,” IEEE Trans. Antennas Propag., Vol. 67, no. 10, pp. 6334–6343, Oct. 2019.
  • Y. X. Zhang, Y. C. Jiao, and S. B. Liu, “3-D-printed comb mushroom-like dielectric lens for stable gain enhancement of printed log-periodic dipole array,” IEEE Antennas Wirel. Propag. Lett., Vol. 17, no. 11, pp. 2099–2103, Nov. 2018.
  • Q. L. Li, S. W. Cheung, D. Wu, and T. I. Yuk, “Microwave lens using periodic dielectric sheets for antenna-gain enhancement,” IEEE Trans. Antennas Propag., Vol. 65, no. 4, pp. 2068–2073, Apr. 2017.
  • D.-N. Dang, and C. Seo, “High gain antenna miniaturization with parasitic lens,” IEEE. Access., Vol. 8, pp. 127181–127189, 2020.
  • H. Xu, G. Wang, Z. Tao, and T. Cai, “An octave-bandwidth half Maxwell fish-eye lens antenna using three-dimensional gradient-index fractal metamaterials,” IEEE Trans. Antennas Propag., Vol. 62, no. 9, pp. 4823–4828, Sept. 2014.
  • L. Hua, H. Cheng, Y. Wang, H. Yang, Y. Liu, Y. Yang, and S. Li, “Bidirectional radiation high-gain antenna based on phase gradient metasurface,” Appl. Phys. B, Vol. 127, p. 136, 2021.
  • M. Asaadi, I. Afifi, and A.-R. Sebak, “High gain and wideband high dense dielectric patch antenna using FSS superstrate for millimeter-wave applications,” IEEE. Access., Vol. 6, pp. 38243–38250, 2018.
  • Y. Li, P. Ren, and Z. Xiang, “A dual-passband frequency selective surface for 5G communication,” IEEE Antennas Wirel. Propag. Lett., Vol. 18, no. 12, pp. 2597–2601, Dec. 2019.
  • C. Xue, Q. Lou, and Z. N. Chen, “Broadband double-layered huygens’ metasurface lens antenna for 5Gmillimeter-wave systems,” IEEE Trans. Antennas Propag., Vol. 68, no. 3, pp. 1468–1476, Mar. 2020.
  • X. Wang, Y. Cheng, and Y. Dong, “A wideband PCB-stacked air-filled Luneburg lens antenna for 5G millimeter-wave applications,” IEEE Antennas Wirel. Propag. Lett., Vol. 20, no. 3, pp. 327–331, Mar. 2021.
  • X. Wang, Y. Pan, and Y. Dong, “An E-plane-focused triple-layer multibeam Luneburg lens antenna for 5G millimeter-wave applications,” IEEE Antennas Wirel. Propag. Lett., Vol. 21, no. 2, pp. 227–231, Feb. 2022.
  • Q. Xi, C. Ma, H. Li, B. Zhang, C. Li, and L. Ran, “A reconfigurable planar Fresnel lens for millimeter-wave 5G frontends,” IEEE Trans. Microwave Theory Tech., Vol. 68, no. 11, pp. 4579–4588, Nov. 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.