85
Views
0
CrossRef citations to date
0
Altmetric
Computers and Computing

Improved Precision Crop Yield Prediction Using Weighted-Feature Hybrid SVM: Analysis of ML Algorithms

ORCID Icon &

References

  • B. Ji, Y. Sun, S. Yang, and J. Wan, “Artificial neural networks for rice yield prediction in mountainous regions,” J. Agric. Sci., Vol. 145, no. 3, pp. 249–61, 2007. DOI: 10.1017/S0021859606006691.
  • H. Valin, et al., “The future of food demand: Understanding differences in global economic models,” Agric. Econ., Vol. 45, no. 1, pp. 51–67, 2014. DOI: 10.1111/agec.12089.
  • E. P. Xing, Q. Ho, P. Xie, and D. Wei, “Strategies and principles of distributed machine learning on big data,” Engineering, Vol. 2, no. 2, pp. 179–95, 2016. DOI: 10.1016/J.ENG.2016.02.008.
  • S. Liu, X. Wang, M. Liu, and J. Zhu, “Towards better analysis of machine learning models: A visual analytics perspective,” Vis. Inform., Vol. 1, no. 1, pp. 48–56, 2017. DOI: 10.1016/j.visinf.2017.01.006.
  • L. Xing, L. Li, J. Gong, C. Ren, J. Liu, and H. Chen, “Daily soil temperatures predictions for various climates in United States using data-driven model,” Energy, Vol. 160, pp. 430–40, 2018. DOI: 10.1016/j.energy.2018.07.004.
  • N. Gandhi, O. Petkar, and L. J. Armstrong, “Rice crop yield prediction using artificial neural networks,” in Proceedings of 2016 IEEE International Conference on Technology and Innovation ICT Agricultural Rural Development TIAR 2016, no. Tiar, 2016, pp. 105–10, DOI: 10.1109/TIAR.2016.7801222.
  • S. Mishra, D. Mishra, and G. H. Santra, “Applications of machine learning techniques in agricultural crop production: A review paper,” Indian J. Sci. Technol., Vol. 9, no. 38, 2016. DOI: 10.17485/ijst/2016/v9i38/95032.
  • J. Behmann, A. K. Mahlein, T. Rumpf, C. Römer, and L. Plümer, “A review of advanced machine learning methods for the detection of biotic stress in precision crop protection,” Precis. Agric., Vol. 16, no. 3, pp. 239–60, 2015. DOI: 10.1007/s11119-014-9372-7.
  • L. K. Mehra, C. Cowger, K. Gross, and P. S. Ojiambo, “Predicting pre-planting risk of Stagonospora nodorum blotch in winter wheat using machine learning models,” Front. Plant Sci., Vol. 7, pp. 1–14, 2016. DOI: 10.3389/fpls.2016.00390.
  • N. Kim, and Y. W. Lee, “Machine learning approaches to corn yield estimation using satellite images and climate data: A case of Iowa State,” J. Korean Soc. Surv. Geod. Photogramm. Cartogr., Vol. 34, no. 4, pp. 383–90, 2016. DOI: 10.7848/ksgpc.2016.34.4.383.
  • G. Ruß, “Data mining of agricultural yield data: A comparison of regression models,” Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Vol. 5633, pp. 24–37, 2009. DOI: 10.1007/978-3-642-03067-3_3.
  • A. Karatzoglou, D. Meyer, and K. Hornik, “Support vector algorithm in R,” J. Stat. Softw., Vol. 15, no. 9, pp. 1–28, 2006.
  • S. Y. Book, “Statistical year book 2017.”
  • S. Khaki, and L. Wang, “Crop yield prediction using deep neural networks,” Front. Plant Sci., Vol. 10, pp. 1–10, 2019. DOI: 10.3389/fpls.2019.00621.
  • A. Chlingaryan, S. Sukkarieh, and B. Whelan, “Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review,” Comput. Electron. Agric., Vol. 151, pp. 61–9, 2018. DOI: 10.1016/j.compag.2018.05.012.
  • M. Castelli, L. Vanneschi, and ÁR Largo, “Supervised learning: Classification,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., Vol. 1–3, no. Ml, pp. 342–9, 2018. DOI: 10.1016/B978-0-12-809633-8.20332-4.
  • J. Huang, X. Chen, L. Zhou, Y. Xue, and J. Lin, “Statistical analysis of the relationship between climate-induced maize yield and rainy-season precipitation across inner Mongolia, North China,” Theor. Appl. Climatol., Vol. 129, no. 3–4, pp. 1145–56, 2017. DOI: 10.1007/s00704-016-1839-1.
  • F. Bu, and X. Wang, “A smart agriculture IoT system based on deep reinforcement learning,” Futur. Gener. Comput. Syst., Vol. 99, pp. 500–7, 2019. DOI: 10.1016/j.future.2019.04.041.
  • J. R. Parker, “Rank and response combination from confusion matrix data,” Inf. Fusion, Vol. 2, no. 2, pp. 113–20, 2001. DOI: 10.1016/S1566-2535(01)00030-6.
  • L. Xu, A. Krzyżak, and C. Y. Suen, “Methods of combining multiple classifiers and their applications to handwriting recognition,” IEEE Trans. Syst. Man Cybern., Vol. 22, no. 3, pp. 418–35, 1992. DOI: 10.1109/21.155943.
  • B. P. Prajapati, “Evaluation of effectiveness of k-means cluster based fast k-nearest neighbor classification applied on agriculture dataset,” Int. J. Comput. Sci. Inf. Secur., Vol. 14, no. 10, pp. 800–7, 2016.
  • S. Kaur, S. Pandey, and S. Goel, “Plants disease identification and classification through leaf images: A survey,” Arch. Comput. Methods Eng., Vol. 26, no. 2, pp. 507–30, 2019. DOI: 10.1007/s11831-018-9255-6.
  • S. G. Setegn, and M. C. Donoso, “Sustainability of integrated water resources management: Water governance, climate and ecohydrology,” in Sustainability of Integrated Water Resources Management. Water Governance, Climate and Ecohydrology, 2015, pp. 1–606. DOI: 10.1007/978-3-319-12194-9.
  • J. Rossi Neto, et al., “Use of the decision tree technique to estimate sugarcane productivity under edaphoclimatic conditions,” Sugar Tech, Vol. 19, no. 6, pp. 662–8, 2017. DOI: 10.1007/s12355-017-0509-7.
  • Y. Everingham, J. Sexton, D. Skocaj, and G. Inman-Bamber, “Accurate prediction of sugarcane yield using a random forest algorithm,” Agron. Sustain. Dev., Vol. 36, no. 2, 2016. DOI: 10.1007/s13593-016-0364-z.
  • I. Zoppis, G. Mauri, and R. Dondi, Kernel Methods: Support Vector Machines, Vols. 1–3. Amsterdam: Elsevier Ltd., 2018.
  • Y. Liu, H. Wang, H. Zhang, and K. Liber, “A comprehensive support vector machine-based classification model for soil quality assessment,” Soil Tillage Res., Vol. 155, pp. 19–26, 2016. DOI: 10.1016/j.still.2015.07.006.
  • P. Norvig. Artificial Intelligence.
  • V. Vakharia, M. Shah, V. Suthar, V. K. Patel, and A. Solanki, “Hybrid perovskites thin films morphology transfer identification by adapting multiscale-SinGAN architecture, heat search optimized feature selection and machine learning algorithms,” Phys. Scr, Vol. 98, pp. 025203, 2023.
  • K. Bhavsar, V. Vakharia, R. Chaudhari, J. Vora, D. Y. Pimenov, and K. Giasin, “A comparative study to predict bearing degradation using discrete wavelet transform (DWT), tabular generative adversarial networks (TGAN) and machine learning models,” Machines, Vol. 10, no. 3, 2022. DOI: 10.3390/machines10030176.
  • S. M. Bharath, S. Manoj, P. Adhappa, P. L. Patagar, and R. Bhaskar, “Crop yield prediction with efficient use of fertilizers,” Lect. Notes Electr. Eng., Vol. 783, pp. 937–943, 2022. DOI: 10.1007/978-981-16-3690-5_87.
  • R. Murugan, F. S. Thomas, G. Geetha Shree, S. Glory, and A. Shilpa, “Linear regression approach to predict crop yield,” Asian J. Comput. Sci. Technol., Vol. 9, no. 1, pp. 40–44, 2020. DOI: 10.51983/ajcst-2020.9.1.2152.
  • J. H. Jeong, et al., “Random forests for global and regional crop yield predictions,” PLoS One, Vol. 11, no. 6, pp. 1–15, 2016. DOI: 10.1371/journal.pone.0156571.
  • U. Grömping, “Variable importance assessment in regression: linear regression versus random forest,” Am. Stat., Vol. 63, no. 4, pp. 308–19, 2009. DOI: 10.1198/tast.2009.08199.
  • D. B. Kiran, J. Priyanka, K. S. Poojitha, and A. Khan, “Crop yield prediction using regression,” Int J Eng Res Technol, Vol. 7, no. 5, pp. 3896–3899, 2020.
  • W. Deng, Z. Huang, J. Zhang, and J. Xu, “A data mining based system for transaction fraud detection,” in 2021 IEEE International Conference Consumer Electronics and Computer Engineering ICCECE 2021, pp. 542–5. DOI: 10.1109/ICCECE51280.2021.9342376.
  • S. Landau, R. A. C. Mitchell, V. Barnett, J. J. Colls, J. Craigon, and R. W. Payne, “A parsimonious, multiple-regression model of wheat yield response to environment,” Agric. For. Meteorol., Vol. 101, no. 2–3, pp. 151–66, 2000. DOI: 10.1016/S0168-1923(99)00166-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.