255
Views
1
CrossRef citations to date
0
Altmetric
Articles

Migratory restlessness and stopover duration in Wood sandpiper Tringa glareola

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 359-375 | Received 04 Dec 2020, Accepted 12 Jan 2021, Published online: 09 Mar 2021

REFERENCES

  • Åkesson S, Hedenström A. 2000. Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol. 47:140–144. doi:10.1007/s002650050004
  • Åkesson S, Walinder G, Karlsson L, Ehnbom S. 2002. Nocturnal migratory flight initiation in reed warblers Acrocephalus scirpaceus: effect of wind on orientation and timing of migration. J Avian Biol. 33:349–357. doi:10.1034/j.1600-048X.2002.02951.x
  • Barron DG, Brawn JD, Weatherhead PJ. 2010. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol Evol. 1:180–187. doi:10.1111/j.2041-210X.2010.00013.x
  • Bartoń K. 2020. MuMIn: multi-model inference. Available from: https://cran.r-project.org/web/packages/MuMIn/ [Accessed 20 Oct 2020].
  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. 67:1–48. doi:10.18637/jss.v067.i01
  • Battley PF, Piersma T, Rogers DI, Dekinga A, Spaans B, Van Gils JA. 2004. Do body condition and plumage during fuelling predict northwards departure dates of Great Knots Calidris tenuirostris from north-west Australia? Ibis. 146:46–60. doi:10.1111/j.1474-919X.2004.00210.x
  • Berthold P. 1996. Control of bird migration. London (UK): Chapman and Hall.
  • Berthold P. 2001. Bird migration: a general survey. Oxford (UK): Oxford University Press.
  • Biebach H. 1985. Sahara stopover in migratory flycatchers: fat and food affect the time program. Experientia. 41:695–697. doi:10.1007/BF02007727
  • Biebach H, Friedrich W, Heine G. 1986. Interaction of bodymass, fat, foraging and stopover period in trans-Sahara migrating passerine birds. Oecologia. 69:370–379. doi:10.1007/BF00377059
  • Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York (NY): Springer-Verlag.
  • Busse P, Meissner W. 2015. Bird ringing station manual. Berlin (Germany): Walter de Gruyter GmbH & Co KG.
  • Colwell MA. 2010. Shorebird ecology, conservation, and management. Berkeley (CA): University of California Press.
  • Conklin JR, Battley PF. 2011. Impacts of wind on individual migration schedules of New Zealand bar-tailed godwits. Behav Ecol. 22:854–861. doi:10.1093/beheco/arr054
  • Cyr NE, Earle K, Tam C, Romero LM. 2007. The effect of chronic psychological stress on corticosterone, plasma metabolites, and immune responsiveness in European starlings. Gen Comp Endocrinol. 154:59–66. doi:10.1016/j.ygcen.2007.06.016
  • Dänhardt J, Lindström Å. 2001. Optimal departure decisions of songbirds from an experimental stopover site and the significance of weather. Anim Behav. 62:235–243. doi:10.1006/anbe.2001.1749
  • Delany S, Scott D, Dodman T, Stroud D. 2009. An atlas of wader populations in Africa and Western Eurasia. Wageningen (The Netherlands): Wetlands International.
  • Del Hoyo J, Elliott A, Sargatal J. 1996. Handbook of the birds of the world. Vol. 3. Hoatzin to auks. Barcelona (Spain): Lynx Editions.
  • Demongin L. 2016. Identification guide to birds in the hand. Cambridge (UK): Cambridge University Press.
  • Dickens MJ, Earle KA, Romero LM. 2009. Initial transference of wild birds to captivity alters stress physiology. Gen Comp Endocrinol. 160:76–83. doi:10.1016/j.ygcen.2008.10.023
  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 36:07–046. doi:10.1111/j.1600-0587.2012.07348.x
  • Duijns S, Niles LJ, Dey A, Aubry Y, Friis C, Koch S, Anderson AM, Smith PA. 2017. Body condition explains migratory performance of a long-distance migrant. Proc R Soc Lond B. 284:20171374. doi:10.1098/rspb.2017.1374
  • Dunn PO, May TA, McCollough MA, Howe MA. 1988. Length of stay and fat content of migrant semipalmated sandpipers in eastern Maine. Condor. 90:824–835. doi:10.2307/1368839
  • Eikenaar C, Klinner T, Szostek KL, Bairlein F. 2014. Migratory restlessness in captive individuals predicts actual departure in the wild. Biol Lett. 10:20140154. doi:10.1098/rsbl.2014.0154
  • Eikenaar C, Müller F, Leutgeb C, Hessler S, Lebus K, Taylor PD, Schmaljohann H. 2017. Corticosterone and timing of migratory departure in a songbird. Proc R Soc Lond B. 284:20162300.
  • Eikenaar C, Schläfke JL. 2013. Size and accumulation of fuel reserves at stopover predict nocturnal restlessness in a migratory bird. Biol Lett. 9:20130712. doi:10.1098/rsbl.2013.0712
  • Ferretti A, Maggini I, Lupi S, Cardinale M, Fusani L. 2019. The amount of available food affects diurnal locomotor activity in migratory songbirds during stopover. Sci Rep. 9:19027. doi:10.1038/s41598-019-55404-3
  • Fox J, Weisberg S. 2019. An R companion to applied regression, 3rd ed. Thousand Oaks (CA): Sage Publications.
  • Fusani L, Cardinale M, Carere C, Goymann W. 2009. Stopover decision during migration: physiological conditions predict nocturnal restlessness in wild passerines. Biol Lett. 5:302–305. doi:10.1098/rsbl.2008.0755
  • Fusani L, Cardinale M, Schwabl I, Goymann W. 2011. Food availability but not melatonin affects nocturnal restlessness in a wild migrating passerine. Horm Behav. 59:187–192. doi:10.1016/j.yhbeh.2010.11.013
  • Fusani L, Coccon F, Mora AR, Goymann W. 2013. Melatonin reduces migratory restlessness in Sylvia warblers during autumnal migration. Front Zool. 10:79. doi:10.1186/1742-9994-10-79
  • Fusani L, Gwinner E. 2004. Simulation of migratory flight and stopover affects night levels of melatonin in a nocturnal migrant. Proc R Soc Lond B. 271:205–211. doi:10.1098/rspb.2003.2561
  • Goymann W, Spina F, Ferri A, Fusani L. 2010. Body fat influences departure from stopover sites in migratory birds: evidence from whole-island telemetry. Biol Lett. 6:478–481. doi:10.1098/rsbl.2009.1028
  • Grönroos J, Green M, Alerstam T. 2012. To fly or not to fly depending on winds: shorebird migration in different seasonal wind regimes. Anim Behav. 83:1449–1457. doi:10.1016/j.anbehav.2012.03.017
  • Grönroos J, Muheim R, Åkesson S. 2010. Orientation and autumn migration routes of juvenile sharp-tailed sandpipers at a staging site in Alaska. J Exp Biol. 213:1829–1835. doi:10.1242/jeb.040121
  • Gudmundsson GA, Lindström Å. 1992. Spring migration of Sanderlings Calidris alba through SW Iceland: wherefrom and whereto. Ardea. 80:315–326
  • Guglielmo CG, McGuire LP, Gerson AR, Seewagen CL. 2011. Simple, rapid, and non-invasive measurement of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J Ornithol. 152:75. doi:10.1007/s10336-011-0724-z
  • Gwinner E. 1996. Circadian and circannual programmes in avian migration. J Exp Biol. 199:39–48.
  • Hua N, Åkesson S, Zhou Q, Ma Z. 2017. Springtime migratory restlessness and departure orientation of Great Knots (Calidris tenuirostris) in the south compared to the north Yellow Sea. Avian Res. 8:20. doi:10.1186/s40657-017-0078-1
  • Iverson GC, Warnock SE, Butler RW, Bishop MA, Warnock N. 1996. Spring migration of Western sandpipers along the Pacific coast of North America: a telemetry study. Condor. 98:10–21. doi:10.2307/1369502
  • Jenni L, Schaub M. 2003. Behavioural and physiological reactions to environmental variation in bird migration: a review. In Berthold P, et al., editors. Avian migration. Berlin, Heidelberg (Germany): Springer; pp. 155–171. doi:10.1007/978-3-662-05957-9_10
  • Kelsey NA, Schmaljohann H, Bairlein F. 2020. A handy way to estimate lean body mass and fuel load from wing length: a quantitative approach using magnetic resonance data. Ring Migr. 34:8–24. doi:10.1080/03078698.2019.1759909
  • Klinner T, Buddemeier J, Bairlein F, Schmaljohann H. 2020. Decision-making in migratory birds at stopover: an interplay of energy stores and feeding conditions. Behav Ecol Sociobiol. 74:10. doi:10.1007/s00265-019-2784-7
  • Labocha M, Hayes J. 2012. Morphometric indices of body condition in birds: a review. J Ornithol. 153:1–22. doi:10.1007/s10336-011-0706-1
  • Landys-Ciannelli MM, Ramenofsky M, Piersma T, Jukema J, Group CR, Wingfield JC. 2002. Baseline and stress-induced plasma corticosterone during long-distance migration in the bar-tailed godwit, Limosa lapponica. Physiol Biochem Zool. 75:101–110. doi:10.1086/338285.
  • Liechti F. 2006. Birds: blowin’ by the wind? J Ornithol. 147:202–211. doi:10.1007/s10336-006-0061-9
  • Lüdecke D, Makowski D, Waggoner P, Patil I. 2020. Performance: assessment of regression models performance. R package. doi:10.5281/zenodo.3952174. Available from: https://easystats.github.io/performance/
  • Lupi S, Goymann W, Cardinale M, Fusani L. 2016. Physiological conditions influence stopover behaviour of short-distance migratory passerines. J Ornithol. 157:583–589. doi:10.1007/s10336-015-1303-5
  • Lupi S, Maggini I, Goymann W, Cardinale M, Rojas Mora A, Fusani L. 2017. Effects of body condition and food intake on stop-over decisions in Garden Warblers and European Robins during spring migration. J Ornithol. 158:989–999. doi:10.1007/s10336-017-1478-z
  • Lyons JE, Haig SM. 1995. Fat content and stopover ecology of spring migrant semipalmated sandpipers in South Carolina. Condor. 97:427–437. doi:10.2307/1369028
  • Ma Z, Hua N, Zhang X, Guo H, Zhao B, Ma Q, Xue W, Tang C. 2011. Wind conditions affect stopover decisions and fuel stores of shorebirds migrating through the south Yellow Sea. Ibis. 153:755–767. doi:10.1111/j.1474-919X.2011.01164.x
  • Meissner W. 2009. A classification scheme for scoring subcutaneous fat depots of shorebirds. J Field Ornithol. 80:289–296. doi:10.1111/j.1557-9263.2009.00232.x
  • Moore DF. 2016. Applied survival analysis using R. Cham (Switzerland): Springer.
  • Muraoka Y, Schulze C, Pavličev M, Wichmann G. 2009. Spring migration dynamics and sex-specific patterns in stopover strategy in the Wood Sandpiper Tringa glareola. J Ornithol. 150:313–319. doi:10.1007/s10336-008-0351-5
  • Nagelkerke NJ. 1991. A note on a general definition of the coefficient of determination. Biometrika. 78:691–692. doi:10.1093/biomet/78.3.691
  • Newton I. 2008. The migration ecology of birds. London (UK): Academic Press.
  • Peig J, Green AJ. 2009. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 118:1883–1891. doi:10.1111/j.1600-0706.2009.17643.x
  • Piersma T. 1987. Hop, skip, or jump? Constraints on migration of arctic waders by feeding, fattening, and flight speed. Limosa. 60:185–194.
  • Piersma T, Zwarts L, Bruggemann JH. 1990. Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea. 78:157–184.
  • Prater AJ, Marchant JH, Vuorinen J. 1977. Guide to the identification and ageing of Holarctic waders. BTO guides. Tring (UK): British Trust for Ornithology.
  • R Core Team. 2020. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.
  • Salewski V, Schaub M. 2007. Stopover duration of Palearctic passerine migrants in the western Sahara – independent of fat stores? Ibis. 149:223–236. doi:10.1111/j.1474-919X.2006.00608.x
  • Sandberg R, Gudmundsson GA. 1996. Orientation cage experiments with Dunlins during autumn migration in Iceland. J Avian Biol. 27:183–188. doi:10.2307/3677220
  • Scebba S, Moschetti G. 1996. Migration pattern and weight changes of Wood Sandpiper Tringa glareola in a stopover site in southern Italy. Ring Migr. 17:101–104. doi:10.1080/03078698.1996.9674124
  • Schamber JL, Esler D, Flint PL. 2009. Evaluating the validity of using unverified indices of body condition. J Avian Biol. 40:49–56. doi:10.1111/j.1600-048X.2008.04462.x
  • Schaub M, Liechti F, Jenni L. 2004. Departure of migrating European robins, Erithacus rubecula, from a stopover site in relation to wind and rain. Anim Behav. 67:229–237. doi:10.1016/j.anbehav.2003.03.011
  • Schaub M, Pradel R, Jenni L, Lebreton JD. 2001. Migrating birds stop over longer than usually thought: an improved capture-recapture analysis. Ecology. 82:852–859.
  • Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol. 1:103–113. doi:10.1111/j.2041-210X.2010.00012.x
  • Schmaljohann H, Eikenaar C. 2017. How do energy stores and changes in these affect departure decisions by migratory birds? A critical view on stopover ecology studies and some future perspectives. J Comp Physiol A. 203:411–429. doi:10.1007/s00359-017-1166-8
  • Schmaljohann H, Kämpfer S, Fritzsch A, Kima R, Eikenaar C. 2015. Start of nocturnal migratory restlessness in captive birds predicts nocturnal departure time in free-flying birds. Behav Ecol Sociobiol. 69:909–914. doi:10.1007/s00265-015-1902-4
  • Schmaljohann H, Klinner T. 2020. A quasi-experimental approach using telemetry to assess migration-strategy-specific differences in the decision-making processes at stopover. BMC Ecol. 20:36. doi:10.1186/s12898-020-00307-5
  • Smith AD, McWilliams SR. 2014. What to do when stopping over: behavioral decisions of a migrating songbird during stopover are dictated by initial change in their body condition and mediated by key environmental conditions. Behav Ecol. 25:1423–1435. doi:10.1093/beheco/aru148
  • Smolinsky JA, Diehl RH, Radzio TA, Delaney DK, Moore FR. 2013. Factors influencing the movement biology of migrant songbirds confronted with an ecological barrier. Behav Ecol Sociobiol. 67:2041–2051. doi:10.1007/s00265-013-1614-6
  • Sokal RR, Rohlf FJ. 1995. Biometry. 3rd ed. New York (NY): W.H. Freeman and Company.
  • Spina F, Volponi S. 2008. Atlante della migrazione degli uccelli in Italia. 1. Non-Passeriformi [Italian bird migration atlas. 1. Non-Passerines]. Rome (Italy): Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). Italian.
  • Tan K, Choi C-Y, Peng H, Melville DS, Ma Z. 2018. Migration departure strategies of shorebirds at a final pre-breeding stopover site. Avian Res. 9:1–10. doi:10.1186/s40657-018-0108-7
  • Therneau T. 2020. A package for survival analysis in R. Available from: https://CRAN.R-project.org/package=survival [Accessed 2020 Oct 20].
  • Therneau TM, Grambsch PM. 2000. Modeling survival data: extending the Cox model. New York (NY): Springer-Verlag.
  • Thieurmel B, Elmarhraoui A. 2019. Suncalc: compute sun position, sunlight phases, moon position and lunar phase. R Package Version 50.
  • Tsvey A, Bulyuk VN, Kosarev V. 2007. Influence of body condition and weather on departures of first-year European robins, Erithacus rubecula, from an autumn migratory stopover site. Behav Ecol Sociobiol. 61:1665–1674. doi:10.1007/s00265-007-0397-z
  • Turcotte Y, Lamarre J-F, Bêty J. 2013. Staging ecology of semipalmated plover (Charadrius semipalmatus) and semipalmated sandpiper (Calidris pusilla) juveniles in the St. Lawrence River Estuary during fall migration. Can J Zool. 91:802–809. doi:10.1139/cjz-2013-0101
  • Vanni L, Baldaccini NE, Giunchi D. 2017. Cue-conflict experiments between magnetic and visual cues in dunlin Calidris alpina and curlew sandpiper Calidris ferruginea. Behav Ecol Sociobiol. 71:61. doi:10.1007/s00265-017-2290-8
  • Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, Butler PJ. 2006. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol. 75:1081–1090. doi:10.1111/j.1365-2656.2006.01127.x
  • Wilson RP, Wilson M-PT. 1989. Tape: a package-attachment technique for penguins. Wild Soc Bull. 17:77–79.
  • Yong W, Moore FR. 1993. Relation between migratory activity and energetic condition among thrushes (Turdinae) following passage across the Gulf of Mexico. Condor. 95:934–943. doi:10.2307/1369429

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.