170
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Improving forecasts of arctic-alpine refugia persistence with landscape-scale variables

, , , &
Pages 2-14 | Received 15 Dec 2015, Accepted 27 Sep 2016, Published online: 05 Dec 2016

References

  • Aalto J, Luoto M. 2014. Integrating climate and local factors for geomorphological distribution models. Earth Surf Processes Landforms. 39:1729–1740. doi: 10.1002/esp.3554
  • Aalto J, Le Roux PC, Luoto M. 2014a. The meso-scale drivers of temperature extremes in high-latitude Fennoscandia. Clim Dyn. 42:237–252. doi: 10.1007/s00382-012-1590-y
  • Aalto J, Venäläinen A, Heikkinen RK, Luoto M. 2014b. Potential for extreme loss in high-latitude earth surface processes due to climate change. Geophys Res Lett. 41:3914–3924. doi: 10.1002/2014GL060095
  • Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB. 2010. The geography of climate change: implications for conservation biogeography. Divers Distrib. 16:476–487. doi: 10.1111/j.1472-4642.2010.00654.x
  • Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. 43:1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x
  • Araújo MB, New M. 2007. Ensemble forecasting of species distributions. Trends Ecol Evol. 22:42–47. doi: 10.1016/j.tree.2006.09.010
  • Araújo MB, Peterson AT. 2012. Uses and misuses of bioclimatic envelope modeling. Ecology. 93:1527–1539. doi: 10.1890/11-1930.1
  • Ashcroft MB. 2010. Identifying refugia from climate change. J Biogeogr. 37:1407–1413.
  • Austin M, Smith T. 1990. A new model for the continuum concept. In: Grabherr G, Mucina L, Dale MB, Ter Braak CJF, editors. Progress in theoretical vegetation science. Netherlands: Springer; p. 35–47.
  • Austin MP, Van Niel KP. 2011a. Impact of landscape predictors on climate change modelling of species distributions: a case study with Eucalyptus fastigata in southern New South Wales, Australia. J Biogeogr. 38:9–19. doi: 10.1111/j.1365-2699.2010.02415.x
  • Austin MP, Van Niel KP. 2011b. Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr. 38:1–8. doi: 10.1111/j.1365-2699.2010.02416.x
  • Beauregard F, de Blois S. 2014. Beyond a climate-centric view of plant distribution: edaphic variables add value to distribution models. PloS One. 9:e92642. doi: 10.1371/journal.pone.0092642
  • Beven KJ, Kirkby MJ. 1979. [A physically based, variable contributing area model of basin hydrology] Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol Sci Bull. 24:43–69. doi: 10.1080/02626667909491834
  • Birks HH. 2008. The late-quaternary history of arctic and alpine plants. Plant Ecol Divers. 1:135–146. doi: 10.1080/17550870802328652
  • Birks HJB, Willis KJ. 2008. Alpines, trees, and refugia in Europe. Plant Ecol Divers. 1:147–160. doi: 10.1080/17550870802349146
  • Botkin DB, Saxe H, AraÚJo MB, Betts R, Bradshaw RHW, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, et al. 2007. Forecasting the effects of global warming on biodiversity. BioScience. 57:227–236. doi: 10.1641/B570306
  • Breiman L. 2001. Random forests. Mach Learn. 45:5–32. doi: 10.1023/A:1010933404324
  • Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R. 2007. Scenarios of greenhouse gas emissions and atmospheric concentrations. US Department of Energy Publications. 6.
  • Dobrowski SZ. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biol. 17:1022–1035. doi: 10.1111/j.1365-2486.2010.02263.x
  • Dubuis A, Giovanettina S, Pellissier L, Pottier J, Vittoz P, Guisan A. 2013. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J Veg Sci. 24:593–606. doi: 10.1111/jvs.12002
  • Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted regression trees. J Anim Ecol. 77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x
  • Engler R, Randin CF, Vittoz P, Czáka T, Beniston M, Zimmermann NE, Guisan A. 2009. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography. 32:34–45. doi: 10.1111/j.1600-0587.2009.05789.x
  • Esri. 2013. ArcScripts [cited 2013 Sept 25]. Available from: http://arcscripts.esri.com.
  • Fielding AH, Bell JF. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv. 24:38–49. doi: 10.1017/S0376892997000088
  • Fløjgaard C, Normand S, Skov F, Svenning JC. 2009. Ice age distributions of European small mammals: insights from species distribution modelling. J Biogeogr. 36:1152–1163. doi: 10.1111/j.1365-2699.2009.02089.x
  • Franklin J. 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr. 19:474–499. doi: 10.1177/030913339501900403
  • Fu P, Rich PM. 1999. Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scales. Proceedings of the Nineteenth Annual ESRI User Conferen, p. 1–31.
  • Geological Survey of Finland. 2010. Soil maps of Finland 1:20 000. Espoo: Geological Survey of Finland. Available from: http://hakku.gtk.fi/en/.
  • Godsoe W, Murray R, Plank MJ. 2015. Information on biotic interactions improves transferability of distribution models. Am Nat. 185:281–290. doi: 10.1086/679440
  • Guisan A, Theurillat JP, Kienast F. 1998. Predicting the potential distribution of plant species in an alpine environment. J Veg Sci. 9:65–74. doi: 10.2307/3237224
  • Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecol Lett. 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x
  • Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett. 8:461–467. doi: 10.1111/j.1461-0248.2005.00739.x
  • Hastie TJ, Tibshirani RJ. 1990. Generalized additive models. London: Chapman and Hall/CRC.
  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT. 2006. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr. 30:751–777. doi: 10.1177/0309133306071957
  • Hodd RL, Bourke D, Skeffington MS. 2014. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation. PloS One. 9:e95147. doi: 10.1371/journal.pone.0095147
  • Hugall A, Moritz C, Moussalli A, Stanisic J. 2002. Reconciling paleodistribution models and comparative phylogeography in the wet tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc Nat Acad Sci USA. 99:6112–6117. doi: 10.1073/pnas.092538699
  • Hylander K, Ehrlen J, Luoto M, Meineri E. 2015. Microrefugia: not for everyone. Ambio, 44 (Suppl 1): 60–68. doi: 10.1007/s13280-014-0599-3
  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AG, Hopper SD, Franklin SE. 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecol Biogeogr. 21:393–404. doi: 10.1111/j.1466-8238.2011.00686.x
  • Kurtto A, Lampinen R. 1999. Atlas of the distribution of vascular plants in Finland: a digital view of the national floristic database. Acta Bot Fenn. 162:67–74.
  • Lenoir J, Graae BJ, Aarrestad PA, Alsos IG, Armbruster WS, Austrheim G, Bergendorff C, Birks HJ, Brathen KA, Brunet J, et al. 2013. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biol. 19:1470–1481. doi: 10.1111/gcb.12129
  • le Roux PC, Lenoir J, Pellissier L, Wisz MS, Luoto M. 2013a. Horizontal, but not vertical, biotic interactions affect fine-scale plant distribution patterns in a low-energy system. Ecology. 94:671–682. doi: 10.1890/12-1482.1
  • le Roux PC, Virtanen R, Luoto M. 2013b. Geomorphological disturbance is necessary for predicting fine-scale species distributions. Ecography. 36:800–808. doi: 10.1111/j.1600-0587.2012.07922.x
  • Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD. 2008. Climate change and the future of California's endemic flora. PLoS One. 3:e2502. doi: 10.1371/journal.pone.0002502
  • Luoto M, Heikkinen RK. 2008. Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Global Change Biol. 14:483–494. doi: 10.1111/j.1365-2486.2007.01527.x
  • McCullagh P, Nelder JA. 1989. Generalized linear models. London: Chapman and Hall/CRC.
  • McCune B, Keon D. 2002. Equations for potential annual direct incident radiation and heat load. J Veg Sci. 13:603–606. doi: 10.1111/j.1654-1103.2002.tb02087.x
  • Médail F, Diadema K. 2009. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr. 36:1333–1345. doi: 10.1111/j.1365-2699.2008.02051.x
  • Mod HK, le Roux PC, Guisan A, Luoto M. 2015. Biotic interactions boost spatial models of species richness. Ecography. 38:913–921. doi: 10.1111/ecog.01129
  • Moore ID, Grayson R, Ladson A. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Processes. 5:3–30. doi: 10.1002/hyp.3360050103
  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T. 2010. The next generation of scenarios for climate change research and assessment. Nature. 463:747–756. doi: 10.1038/nature08823
  • NASA Land Processes Distributed Active Archive Center. (2013) ASTER DEM. [cited 2013 7. 10]. Available from: https://lpdaac.usgs.gov/data_access.
  • Oksanen L, Virtanen R. 1995. Topographic, altitudinal and regional patterns in continental and suboceanic heath vegetation of Northern Fennoscandia. Acta Bot Fenn. 153:1–80.
  • Patsiou TS, Conti E, Zimmermann NE, Theodoridis S, Randin CF. 2014. Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Global Change Biol. 20:2286–2300. doi: 10.1111/gcb.12515
  • Pearson RG. 2006. Climate change and the migration capacity of species. Trends Ecol Evol. 21:111–113. doi: 10.1016/j.tree.2005.11.022
  • Phillips SJ, Dudík M, Schapire RE. 2004. A maximum entropy approach to species distribution modeling. Proceedings of the twenty-first international conference on machine learning, p. 83.
  • Pirinen P, Simola H, Aalto J, Kaukoranta J, Karlsson P, Ruuhela R. 2012. Climatological statistics of Finland 1981–2010. Finnish Meteorol Inst Rep. 1:1–96.
  • Provan J, Bennett KD. 2008. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 23:564–571. doi: 10.1016/j.tree.2008.06.010
  • Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A. 2009. Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biol. 15:1557–1569. doi: 10.1111/j.1365-2486.2008.01766.x
  • R Development Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Reside AE, VanDerWal J, Phillips BL, Shoo LP, Rosauer DF, Anderson BJ, Welbergen JA, Moritz C, Ferrier S, Harwood TD. 2013. Climate change refugia for terrestrial biodiversity. [cited 2013 Aug 20]. Available from: http://www.nccarf.edu.au/publications/climate-change-refugia-terrestrial-biodiversity.
  • Reside AE, Welbergen JA, Phillips BL, Wardell-Johnson GW, Keppel G, Ferrier S, Williams SE, VanDerWal J. 2014. Characteristics of climate change refugia for Australian biodiversity. Austral Ecol. 39:887–897. doi: 10.1111/aec.12146
  • Riahi K, Grübler A, Nakicenovic N. 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecasting Social Change. 74:887–935. doi: 10.1016/j.techfore.2006.05.026
  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P. 2011. RCP 8.5 – a scenario of comparatively high greenhouse gas emissions. Clim Change. 109:33–57. doi: 10.1007/s10584-011-0149-y
  • Rickebusch S, Thuiller W, Hickler T, Araujo MB, Sykes MT, Schweiger O, Lafourcade B. 2008. Incorporating the effects of changes in vegetation functioning and CO2 on water availability in plant habitat models. Biol Lett. 4:556–559. doi: 10.1098/rsbl.2008.0105
  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 2003. Fingerprints of global warming on wild animals and plants. Nature. 421:57–60. doi: 10.1038/nature01333
  • Roux P, Virtanen R, Heikkinen RK, Luoto M. 2012. Biotic interactions affect the elevational ranges of high-latitude plant species. Ecography. 35:1048–1056. doi: 10.1111/j.1600-0587.2012.07534.x
  • Rull V, Vegas-Vilarrúbia T. 2006. Unexpected biodiversity loss under global warming in the neotropical Guayana Highlands: a preliminary appraisal. Global Change Biol. 12:1–9. doi: 10.1111/j.1365-2486.2005.001080.x
  • Sætersdal M, Birks H, Peglar S. 1998. Predicting changes in Fennoscandian vascular-plant species richness as a result of future climatic change. J Biogeogr. 25:111–112. doi: 10.1046/j.1365-2699.1998.251192.x
  • Scherrer D, Körner C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr. 38:406–416. doi: 10.1111/j.1365-2699.2010.02407.x
  • Shoo LP, Hoffmann AA, Garnett S, Pressey RL, Williams YM, Taylor M, Falconi L, Yates CJ, Scott JK, Alagador D. 2013. Making decisions to conserve species under climate change. Clim Change. 119:239–246. doi: 10.1007/s10584-013-0699-2
  • Skov F, Svenning JC. 2004. Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography. 27:366–380. doi: 10.1111/j.0906-7590.2004.03823.x
  • Slaton MR, Linder P. 2015. The roles of disturbance, topography and climate in determining the leading and rear edges of population range limits. J Biogeogr. 42:255–266. doi: 10.1111/jbi.12406
  • Smith SJ, Wigley T. 2006. Multi-gas forcing stabilization with Minicam. Energy J. 1:373–391.
  • Sormunen H, Virtanen R, Luoto M. 2011. Inclusion of local environmental conditions alters high-latitude vegetation change predictions based on bioclimatic models. Polar Biol. 34:883–897. doi: 10.1007/s00300-010-0945-2
  • Stewart JR, Lister AM, Barnes I, Dalén L. 2010. Refugia revisited: individualistic responses of species in space and time. Proc R Soc London B: Biol Sci. 277:661–671. doi: 10.1098/rspb.2009.1272
  • Svenning JC, Normand S, Kageyama M. 2008. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol. 96:1117–1127. doi: 10.1111/j.1365-2745.2008.01422.x
  • Taberlet P. 1998. Biodiversity at the intraspecific level: the comparative phylogeographic approach. J Biotechnol. 64:91–100. doi: 10.1016/S0168-1656(98)00106-0
  • Temunović M, Frascaria-Lacoste N, Franjić J, Satovic Z, Fernández-Manjarrés JF. 2013. Identifying refugia from climate change using coupled ecological and genetic data in a transitional Mediterranean-temperate tree species. Mol Ecol. 22:2128–2142. doi: 10.1111/mec.12252
  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L. 2004. Extinction risk from climate change. Nature. 427:145–148. doi: 10.1038/nature02121
  • Thuiller W, Georges D, Engler R. 2013. biomod2: Ensemble platform for species distribution modeling. R Package Version. 2:r560.
  • Thuiller W, Lafourcade B, Engler R, Araújo MB. 2009. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography. 32:369–373. doi: 10.1111/j.1600-0587.2008.05742.x
  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC. 2005. Climate change threats to plant diversity in Europe. Proc Nat Acad Sci USA. 102:8245–8250. doi: 10.1073/pnas.0409902102
  • Tikkanen, M. 2005. Climate. In: Seppälä M, editor. The physical geography of Fennoscandia. Oxford: Oxford University Press. p. 432.
  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F. 2011. The representative concentration pathways: an overview. Clim Change. 109:5–31. doi: 10.1007/s10584-011-0148-z
  • Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL, Guralnick RP. 2007. Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. Plos One. 2:e563. doi: 10.1371/journal.pone.0000563
  • Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA. 2009. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Nat Acad Sci USA. 106:19729–19736. doi: 10.1073/pnas.0901639106
  • Williams P, Hannah LEE, Andelman S, Midgley GUY, AraÚJo M, Hughes G, Manne L, Martinez-Meyer E, Pearson R. 2005. Planning for climate change: identifying minimum-dispersal corridors for the cape proteaceae. Conserv Biol. 19:1063–1074. doi: 10.1111/j.1523-1739.2005.00080.x
  • Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J. 2009. Implications of limiting CO2 concentrations for land use and energy. Science. 324:1183–1186. doi: 10.1126/science.1168475
  • Zimmermann NE, Yoccoz NG, Edwards TCJr., Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB. (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proc Nat Acad Sci USA. 106 (Suppl 2): 19723–19728. doi: 10.1073/pnas.0901643106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.