1,371
Views
6
CrossRef citations to date
0
Altmetric
Opinion Piece

Is ice in the Himalayas more resilient to climate change than we thought?

, , , &

References

  • Ballantyne CK. 2002. Paraglacial geomorphology. Quat Sci Rev. 21:1935–2017. doi:10.1016/S0277-3791(02)00005-7.
  • Benn DI, Bolch T, Hands K, Gulley J, Luckman A, Nicholson LI, Quincey D, Thompson S, Toumi R, Wiseman S. 2012. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci Rev. 1(114):156–174.
  • Bolch T. 2017. Hydrology: Asian glaciers are a reliable water source. Nature. 545(7653):161–162.
  • Bolch T, Kulkarni A, Kaab A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S. 2012. The state and fate of Himalayan glaciers. Science. 336(6079):310–314.
  • Bonnaventure PP, Lamoureux SF. 2013. The active layer: a conceptual review of monitoring, modelling techniques and changes in a warming climate. Prog Phys Geogr. 37:352–376. doi:10.1177/0309133313478314.
  • Bosson J-B, Lambiel C. 2016. Internal structure and current evolution of very small debris-covered glacier systems located in Alpine permafrost environments. Front Earth Sci. 4. doi:10.3389/feart.2016.00039, p.39.
  • Brenning A. 2005. Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33-35°S). Permafr Periglac Process. 16:231–240. doi:10.1002/ppp.528.
  • Carrington D. 2019. A third of Himalayan ice cap doomed, finds report. The Guardian, 14 February. [accessed 2019 Feb 14]. https://www.theguardian.com/environment/2019/feb/04/a-third-of-himalayan-ice-cap-doomed-finds-shocking-report.
  • Geiger ST, Daniels JM, Miller SN, Nicholas JW. 2014. Influence of rock glaciers on stream hydrology in the La Sal Mountains, Utah. Arctic Antarct Alp Res. 46:645–658.
  • Haeberli W, Hallet B, Arenson L, Elconin RF, Humlum O, Kääb A, Kaufmann V, Ladanyi B, Matsuoka N, Springman S, Mühll DV. 2006. Permafrost creep and rock glacier dynamics. Permafr Periglac Process. 17:189–214. doi:10.1002/ppp.561,2006.
  • Immerzeel WW, Lutz AF, Andrade M, Bahl A, Biemans H, Bolch T, Hyde S, Brumby S, Davies BJ, Elmore AC, et al. 2020. Importance and vulnerability of the world's water towers. Nature. 577:364. doi:10.1038/s41586-019-1822-y,2020.
  • Jones DB, Harrison S, Anderson K, Shannon S, Betts RA. 2020. Rock glaciers represent hidden water stores in the Himalaya. Earth ArXiv. 6 May 2020, p. 145368.
  • Jones DB, Harrison S, Anderson K, Whalley WB. 2019. Rock glaciers and mountain hydrology: a review. Earth Science Reviews. 193:66–90.
  • Kayastha RB, Takeuchi Y, Nakawo M, Ageta Y. 2000. Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor. Debris-Covered Glaciers. Proceedings from a Workshop held at Seattle, WA, USA, September 2000. C. F. Raymond, Nakawo, M., Fountain, A. (Eds.). Wallingford, UK, IAHS. 264: 71–81.
  • Knight J, Harrison S, editors 2009. Periglacial and paraglacial processes and environments. London: Geological Society of London.
  • Knight J, Harrison S, Jones DB. 2019. Rock glaciers and the geomorphological evolution of deglacierizing mountains. Geomorphology. 324:14–24.
  • Mihalcea C, Mayer C, Diolaiuti G, D’Agata C, Smiraglia C, Lambrecht A, Vuillermoz E, Tartari G. 2008. Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Ann Glaciol. 48(1):49–57.
  • Miles KE, Hubbard B, Irvine-Fynn TDL, Miles ES, Quincey DJ, Rowan AV. 2020. Hydrology of debris-covered glaciers in high mountain Asia. Earth Sci Rev. 207:103212.
  • Monnier S, Kinnard C. 2017. Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the central Andes of Chile (30–33 ° S). Earth Surface Dynamics. 5:493–509. doi:10.5194/esurf-5-493-2017.
  • Nicholson LI, McCarthy M, Pritchard HD, Willis I. 2018. Supraglacial debris thickness variability: impact on ablation and relation to terrain properties. Cryosphere. 12(12):3719–3734.
  • Nüsser M, Baghel R. 2014. The emergence of the cryoscape: contested narratives of Himalayan glacier dynamics and climate change. In: Schuler B, editor. Environmental and climate change in South and Southeast Asia. Leiden: Brill; p. 138–157.
  • Nuzhat QQ, Jain SK, Thayyen RJ, Patil PR, Singh MK. 2020. Hydrology of the Himalayas. In: AP Dimri, B Bookhagen, M Stoffel, T Yasunari, editors. Himalayan weather and climate and their impact on the environment. Cham: Springer; p. 419–452.
  • Pellicciotti F, Carenzo M, Bordoy R, Stoffel M. 2014. Changes in glaciers in the Swiss Alps and impact on basin hydrology: current state of the art and future research. Sci Total Environ. 493:1152–1170. doi:10.1016/j.scitotenv.2014.04.022.
  • Schaffer N, Macdonell S, Réveillet M, Yáñez E, Valois R. 2019. Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes. Reg Environ Chang. 19:1263–1279.
  • Shannon S, Smith R, Wiltshire A, Payne T, Huss M, Betts R, Caesar J, Koutroulis A, Jones D, Harrison S. 2019. Global glacier volume projections under high-end climate change scenarios. Cryosphere. 13:325–350.