1,583
Views
1
CrossRef citations to date
0
Altmetric
Articles

Evidence of glacier-permafrost interactions associated with hydro-geomorphological processes and landforms at Snøhetta, Dovrefjell, Norway

, &
Pages 273-302 | Received 15 Jun 2020, Accepted 12 Jul 2021, Published online: 30 Jul 2021

References

  • Allen P. 2005. Striking a chord. Nature. 434:961.
  • Allen S, Owens I, Sirguey P. 2008. Satellite remote sensing procedures for glacial terrain analyses and hazard assessment in the Aoraki Mount Cook region, New Zealand. New Zealand J Geol Geophy. 51:73–87.
  • Andreassen LM, Hausberg JE, Winsvold SH, Paul F. 2012. Inventory of Norwegian glaciers. Norwegian water resources and energy directorate.
  • Astakhov VI, Isayeva LL. 1988. The ‘ice hill’: an example of ‘retarded deglaciation’ in Siberia. Quat Sci Rev. 7:29–40.
  • Awal R, Nakagawa H, Kawaike K, Baba Y, Zhang H. 2011. Experimental study on piping failure of natural dam. J JSCE. 67:I_157–I_162.
  • Ballantyne CK. 2002. Paraglacial geomorphology. Quat Sci Rev. 21:1935–2017.
  • Bierman PR, Montgomery DR. 2014. Key concepts in geomorphology. New York, NY: Freeman; 121 p., ISBN: 9781429238601 .
  • Bogen J. 1982. En fluvialgeomorphologisk undersøkelse av joravassdraget medbreområdet Snøhetta. Oslo: Rapport / Kontaktutvalget for vassdragsreguleringer, Universitetet i Oslo. 51.
  • Bogen J, Xu M, Kennie P. 2015. The impact of pro-glacial lakes on downstream sediment delivery in Norway. Earth Surf Process Landforms. 40:942–952.
  • Brown LE, Hannah DM, Milner AM, Soulsby C, Hodson AJ, Brewer MJ. 2006. Water source dynamics in a glacierized alpine river basin (Taillon-Gabiétous, French Pyrénées). Water Resour Res. 42:399.
  • Carrivick JL, Quincey DJ. 2014. Progressive increase in number and volume of ice-marginal lakes on the western margin of the Greenland Ice Sheet. Glob Planet Change. 116:156–163.
  • Carrivick JL, Tweed FS. 2013. Proglacial lakes: character, behaviour and geological importance. Quat Sci Rev. 78:34–52.
  • Chernomorets S, Petrakov D, Aleynikov A, Bekkiev M, Viskhadzhieva K, Dokukin M, Kalov R, Kidyaeva V, Krylenko V, Krylenko I, et al. 2018. The outburst of Bashkara glacier lake (Central Caucasus, Russia). On September 1, 2017. EC. XXII.
  • Church M, Gilbert R. 1975. Proglacial fluvial and lacustrine environments. In: Jopling AV, McDonald BC, editors. Glaciofluvial and glaciolacustrine sedimentation. GeoScienceWorld; p. 22–100 (SEPM special publication; vol. 23).
  • Church M, Ryder J. 1972. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc America Bull. 83:3059.
  • Clague J, Evans S. 2000. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat Sci Rev. 19:1763–1783.
  • Cook KL, Andermann C, Gimbert F, Adhikari BR, Hovius N. 2018. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science. 362:53–57.
  • Cooley S, Smith L, Stepan L, Mascaro J. 2017. Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery. Remote Sens (Basel). 9:1306.
  • Cooper R, Hodgkins R, Wadham J, Tranter M. 2011. The hydrology of the proglacial zone of a high-arctic glacier (Finsterwalderbreen, Svalbard): Sub-surface water fluxes and complete water budget. J Hydrol. 406:88–96.
  • Dahl SO, Nesje A. 1992. Paleoclimatic implications based on equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene cirque glaciers in inner Nordfjord, western Norway. Palaeogeogr Palaeoclimatol Palaeoecol. 94:87–97.
  • Deline P, Gruber S, Delaloye R, Fischer L, Geertsema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, et al. 2015. Ice loss and slope stability in high-mountain regions. In: Haeberli W, Whiteman CA, Shroder JF, editor. Snow and ice-related hazards, risks and disasters. Amsterdam, Boston, Heidelberg: Elsevier; p. 521–561. (Hazards and disasters series).
  • Dobiński W, Grabiec M, Gadek B. 2011. Spatial relationship in interaction between glacier and permafrost in different mountainous environments of high and mid latitudes, based on GPR research. Geolog Quater. 55:375–388.
  • Dobiński W, Grabiec M, Glazer M. 2017. Cold–temperate transition surface and permafrost base (CTS-PB) as an environmental axis in glacier–permafrost relationship, based on research carried out on the Storglaciären and its forefield, northern Sweden. Quat Res. 88:551–569.
  • Driscoll FG. 1980. Wastage of the Klutlan Ice-Cored Moraines, Yukon Territory, Canada. Quat Res. 14:31–49.
  • Dyke AS, Evans DJA. 2003. Ice-marginal terrestrial landsystems: Northern Laurentide and Innuitian ice sheet margins. In: Glooster L, Evans D, editors. Glacial landsystems. p. 143–163.
  • Emmer A, Cochachin A. 2013. The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca. North American Cordillera, and Himalayas. AUC GEOGRAPHICA. 48:5–15.
  • Etzelmüller B, Hagen JO. 2005. Glacier-permafrost interaction in Arctic and alpine mountain environments with examples form southern Norway and Svalbard. In: Harris C, Murton J, editors. Cryospheric systems: Glaciers and permafrost. p. 11–27 (Geological Society special publication; vol. 242).
  • Etzelmüller B, Hagen JO, Vatne G, Ødegård RS, Sollid JL. 1996. Glacier debris accumulation and sediment deformation influenced by permafrost: examples from Svalbard. Ann Glaciol. 22:53–62.
  • Ewertowski MW, Tomczyk AM. 2015. Quantification of the ice-cored moraines’ short-term dynamics in the high-Arctic glaciers Ebbabreen and Ragnarbreen, Petuniabukta. Svalbard Geomorphol. 234:211–227.
  • Eyles N. 1979. Facies of supraglacial sedimentation on Icelandic and Alpine temperate glaciers. Can J Earth Sci. 16:1341–1361.
  • Falátková K. 2016. Temporal analysis of GLOFs in high-mountain regions of Asia and assessment of their causes. AUC GEOGRAPHICA. 51:145–154.
  • Florea L, Bird B, Lau JK, Wang L, Lei Y, Yao T, Thompson LG. 2017. Stable isotopes of river water and groundwater along altitudinal gradients in the high Himalayas and the Eastern Nyainqentanghla mountains. J Hydrol Reg Stud. 14:37–48.
  • Follestad B. 2003. Snøhetta 1519 IV. Kvartærgeologisk kart. Trondheim: Norges geologiske Undersøkelse (NGU).
  • Gat JR, Gonfiantini R, editors. 1981. Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle. Vienna: Internat. Atomic Energy Agency. 33724 p. (Technical reports series / International Atomic Energy Agency; No. 210). ISBN: 92-0-145281-0 .
  • Geilhausen M, Otto J-C, Morche D, Schrott L. 2012. Decadal sediment yield from an Alpine proglacial zone inferred from reservoir sedimentation (Pasterze, Hohe Tauern, Austria). IAHS Redbook on Erosion and Sediment Yields Chang Environ. 356:161–171.
  • Giardino JR, Vitek JD. 1988. The significance of rock glaciers in the glacial-periglacial landscape continuum. J Quater Sci. 3:97–103.
  • Haldorsen S, Riise G, Swensen B, Sletten R. 1997. Environmental isotopes as tracers in catchments. In: Saether OM, Caritat P de, editor. Geochemical processes, weathering and groundwater recharge in catchments. Rotterdam: Balkema; p. 185–210.
  • Harris SA. 1988. The alpine periglacial zone. In: Clark M, editor. Advances in periglacial geomorphology. Chichester: John Wiley & Sons Ltd; p. 369–413.
  • Harris SA, Corte AE. 1992. Interactions and relations between mountain permafrost, glaciers, snow and water. Permafrost and Periglac Process. 3:103–110.
  • Harris C, Murton J. 2005. Interactions between glaciers and permafrost: an introduction. In: Harris C, Murton J, editors. Cryospheric systems: Glaciers and permafrost; p. 1–9 (Geological Society special publication; vol. 242).
  • Heckmann T, McColl S, Morche D. 2016. Retreating ice: research in pro-glacial areas matters. Earth Surf Process Landforms. 41:271–276.
  • Hewitt K. 2002. Introduction: landscape assemblages and transition in cold regions. In: Hewitt K, Byrne M-L, English M, Young G, editor. Landscapes of transition. Landform assemblages and transformations in cold regions. Dordrecht: Springer Netherlands; p. 1–8. (The GeoJournal Library).
  • Hock R. 2003. Temperature index melt modelling in mountain areas. J Hydrol. 282:104–115.
  • Hoffmann T. 2015. Sediment residence time and connectivity in non-equilibrium and transient geomorphic systems. Earth Sci Rev. 150:609–627.
  • Hofgaard A. 2008. Overvåking av palsmyr. Førstegangsundersøkelse i Leirpullan, Sør-Trøndelag 2007. NINA Rapport 364. [place unknown]: Norsk institutt for naturforskning.
  • Hofgaard A. 2009. Norwegian monitoring program for palsa peatlands. Reports of Finnish Environ Inst. 3:15–16.
  • Hofgaard A, Myklebost H. 2018. Andre gjenanalyse i Leirpullan, Dovrefjell i Trøndelag. Endringer fra 2007 til 2017. NINA Rapport 1510. Norsk institutt for naturforskning.
  • Hughes T. 1973. Glacial permafrost and Pleistocene ice ages. In: Permafrost: Second International Conference. North American contribution. Washington, DC, National Academy of Sciences, p. 213–223.
  • IAEA/WMO. 2011. Global Network of Isotopes in Precipitation. The GNIP Database. Available from: https://www.iaea.org/water.
  • Irvine-Fynn TDL, Hodson AJ, Moorman BJ, Vatne G, Hubbard AL. 2011. Polythermal glacier hydrology: A review. Rev Geophys. 49:95.
  • Isaksen K, Hauck C, Gudevang E, Ødegård RS, Sollid JL. 2002. Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on BTS and DC resistivity tomography data. Norsk Geogr Tidsskrift – Norwegian J Geogr. 56:122–136.
  • Isaksen K, Ødegård RS, Etzelmüller B, Hilbich C, Hauck C, Farbrot H, Eiken T, Hygen HO, Hipp TF. 2011. Degrading mountain permafrost in southern Norway: spatial and temporal variability of mean ground temperatures, 1999–2009. Permafrost and Periglac Process. 22:361–377.
  • Isaksen K, Sollid J. 2002. Løsavleiringer og permafrost i Hjerkinn skytefelt, Dovrefjell. Rapport. Universitet i Oslo. Available from: https://www.forsvarsbygg.no/contentassets/aa1a299ae7634a3bbb8bf8df785e581b/losmassegeologi-hjerkinn.pdf.
  • Iturrizaga L. 2014. Glacier lake outburst floods. In: Singh VP, Singh P, Haritashya UK, editor. Encyclopedia of snow, ice and glaciers. 1st ed. New York [New York], Boston, Massachusetts: Springer; Credo Reference; p. 381–399 (Encyclopedia of earth sciences series).
  • Jóhannesson T, Sigurdsson O, Laumann T, Kennett M. 1995. Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway and Greenland. J Glaciol. 41:345–358.
  • Kartverket Geovekst og kommuner - Geodata AS, cartographer. 2009. Omløp Nord Østlandet 2009 – Hedmark Nord 2009. Available from: https://norgeibilder.no/.
  • Kartverket Geovekst og kommuner - Geodata AS, cartographer. 2014. Omløpsfoto Trøndelag 2014. Available from: https://norgeibilder.no/.
  • Kartverket Geovekst og kommuner - Geodata AS, cartographer. 2016. Omløpsfoto Hedmark-Nord 2016 GSD25. Available from: https://norgeibilder.no/.
  • Kendall C, Doctos D, Young M. 2014. Environmental isotope applications in hydrological studies. In: Holland HD, editor. Treatise on geochemistry. 2nd ed. Amsterdam: Elsevier; p. 273–327.
  • Kerguillec R. 2011. Étagements périglaciaires fonctionnels dans les massifs du Dovrefjell et des Rondane (Norvège centrale, 62°22’N/61°46’N; 8°5E/10°E): les enseignements du terrain. Environ Périglaciaires. 17:45–65.
  • Kerguillec R. 2013. Les dynamiques périglaciaires actuelles dans un milieu de haute montagne atlantique: parcs nationaux du Oppland et du Sør-Trøndelag, Norvège centrale.
  • Kerguillec R. 2014a. Characteristics and altitudinal distribution of periglacial decay phenomena in the massif of Rondane, Central Norway. Geogr Ann Phys Geogr. 97:299–315.
  • Kerguillec R. 2014b. Mise en évidence d’un étage de déprise périglaciaire critique dans le massif des Rondane (Norvège centrale). Environ Périglaciaires. 20–21:69–80.
  • Kerguillec R. 2014c. Recent patterned grounds development on a glacier surface (Dovrefjell, Central Norway): an ephemeral periglacial activity in a paraglacial context. Geogr Ann Phys Geogr. 96:1–7.
  • Kerguillec R, Sellier D. 2012. L’abaissement vers l’océan des limites de l’étage périglaciaire fonctionnel en Norvège centrale: un facteur de caractérisation de la montagne atlantique. Environ Périglaciaires. 18:79–88.
  • Kerguillec R, Sellier D. 2021. Selection of geomorphosites in the Dovrefjell National Park (central Norway). In: Beylich, AA, editor. Landscapes and Landforms of Norway. Springer Nature Switzerland AG; p. 271–282 (World Geomorphological Landscapes).
  • Kerguillec R, Sellier D, Beylich A. 2015. An example of a periglacial recovery: the slope of Sletthøi (Dovrefjell, central Norway). Zeitschrift für Geomorphologie. 59:173–196.
  • King L. 1983. High mountain permafrost in Scandinavia. In: Proceedings of the 4thInternational Conference on Permafrost, Fairbanks, Alaska. National AcademyPress, Washington, DC, p. 612–617.
  • Kirchner M, Faus-Kessler T, Jakobi G, Leuchner M, Ries L, Scheel H-E, Suppan P. 2013. Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. Int J Climatol. 33:539–555.
  • Klok EJ, Oerlemans J. 2002. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. J Glaciol. 48:505–518.
  • Kneisel C, Kääb A. 2007. Mountain permafrost dynamics within a recently exposed glacier forefield inferred by a combined geomorphological, geophysical and photogrammetrical approach. Earth Surf Process Landforms. 32:1797–1810.
  • Kokelj SV, Lantz TC, Tunnicliffe J, Segal R, Lacelle D. 2017. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology. 45(4):371–374.
  • Krill A. 1987. Snøhetta berggrunnskart 1519 IV, 1:50 000. Preliminary printed map. Trondheim: The Geological Survey of Norway (NGU).
  • Krüger J. 1994. Glacial processes, sediments, landforms, and stratigraphy in the terminus region of Myrdalsjökull, Iceland: two interdisciplinary case studies. Copenhagen: Folia Geographica Danica, XXI.
  • Krüger J, Kjær KH. 2000. De-icing progression of ice-cored moraines in a humid, subpolar climate, Kötlujökull, Iceland. The Holocene. 10:737–747.
  • Krüger J, Kjær KH, Schomacker A. 2010. Dead-ice environments: a landsystems model for a debris-charged, stagnant lowland glacier Margin, Kötlujökull. In: Schomacker A, Krüger J, Kjær KH, editors. The Mýrdalsjökull Ice Cap, Iceland: glacial processes, sediments and landforms on an active volcano, Vol. 13. Amsterdam: Elsevier; p. 105–126 (Developments in Quaternary Sciences; vol. 13).
  • Kumar A, Tiwari SK, Verma A, Gupta AK. 2018. Tracing isotopic signatures (δD and δ18O) in precipitation and glacier melt over chorabari glacier–hydroclimatic inferences for the Upper Ganga Basin (UGB), Garhwal Himalaya. J Hydrol Reg Stud. 15:68–89.
  • Langston G, Bentley LR, Hayashi M, McClymont A, Pidlisecky A. 2011. Internal structure and hydrological functions of an alpine proglacial moraine. Hydrol Process. 42:2967–2982.
  • Liestøl O. 1977. Pingos, springs, and permafrost in Spitsbergen. Norsk Polarinstitutt Årbok. 1975:7–29.
  • Liestøl O. 1996. Open-system pingos in Spitsbergen. Norsk Geogr Tidsskrift – Norwegian J Geogr. 50:81–84.
  • Lukas S. 2014. Ice-cored moraines. In: Singh VP, Singh P, Haritashya UK, editor. Encyclopedia of snow, ice and glaciers. 1st ed. New York [New York], Boston, Massachusetts: Springer; Credo Reference; p. 616–619 (Encyclopedia of earth sciences series).
  • Lyså A, Lønne I. 2001. Moraine development at a small high-Arctic valley glacier: rieperbreen. Svalbard J Quater Sci. 16:519–529.
  • Mancini D, Lane SN. 2020. Changes in sediment connectivity following glacial debuttressing in an Alpine valley system. Geomorphology. 352:106987.
  • Marsh P, Neumann NN. 2001. Processes controlling the rapid drainage of two ice-rich permafrost-dammed lakes in NW Canada. Hydrol Process. 15:3433–3446.
  • Marshall SJ, Clarke GKC. 1999. Ice sheet inception: subgrid hypsometric parameterization of mass balance in an ice sheet model. Clim Dyn. 15:533–550.
  • Marshall SJ, Losic M. 2011. Temperature lapse rates in glacierized basins. In: Singh VP, Singh P, Haritashya UK, editor. Encyclopedia of snow, Ice and glaciers. Dordrecht: Springer Science + Business Media B.V; p. 1145–1150. (Encyclopedia of earth sciences series).
  • Matthews JA, Dahl S-O, Berrisford MS, Nesje A. 1997. Cyclic development and thermokarstic degradation of palsas in the mid-alpine zone at Leirpullan, Dovrefjell, Southern Norway. Permafrost and Periglac Process. 8:107–122.
  • Matthews JA, Wilson P, Mourne RW. 2017. Landform transitions from pronival ramparts to moraines and rock glaciers: a case study from the Smorbotn cirque, Romsdalsalpane, southern Norway. Geogr Ann. 99:15–37.
  • Matthews JA, Winkler S, Wilson P. 2014. Age and origin of ice-cored moraines in Jotunheimen and Breheimen, southern Norway: insights from schmidt-hammer exposure-age dating. Geogr Ann. 96:531–548.
  • McClymont AF, Roy JW, Hayashi M, Bentley LR, Maurer H, Langston G. 2011. Investigating groundwater flow paths within proglacial moraine using multiple geophysical methods. J Hydrol. 399:57–69.
  • McFeeters S. 1996. The use of the normalized difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens. 17:1425–1432.
  • Mercier D. 2008. Paraglacial and paraperiglacial landsystems; concepts, temporal scales and spatial distribution. Geomorphol Relief Processus Environ. 14:223–233.
  • Miles ES, Watson CS, Brun F, Berthier E, Esteves M, Quincey DJ, Miles KE, Hubbard B, Wagnon P. 2018. Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya. The Cryosphere. 12:3891–3905.
  • Minder JR, Mote PW, Lundquist JD. 2010. Surface temperature lapse rates over complex terrain: lessons from the cascade mountains. J Geophys Res. 115:F02011.
  • Moser H, Stichler W. 1988. Environmental isotopes in ice and snow. In: Fritz P, editor. The terrestrial environment: A. 2. impr. Amsterdam: Elsevier; p. 141–178. (Handbook of environmental isotope geochemistry; vol. 1).
  • Norges Geologiske Undersøkelse, cartographer. 2018. InSAR Norway. Available from: https://insar.ngu.no/.
  • Norwegian Mapping Authority. 2010. DTM 10 Terrengmodell.
  • Ødegård RS, Hoelzle M, Vedel Johansen K, Sollid JL. 1996. Permafrost mapping and prospecting in southern Norway. Norsk Geogr Tidsskrift – Norwegian J Geogr. 50:41–53.
  • Østrem G. 1964. Ice-cored moraines in Scandinavia. Geogr Ann Phys Geogr. 46:282–337.
  • Østrem G, Selvig KD, Tandberg K. 1988. Atlas over Breer i Sør-Norge: Atlas of glaciers in South Norway. Revidert utgave utarbeidet på grunnlag av flybilder tatt i perioden 1969–1986. Oslo: Hydrologisk Avdeling, Norges Vassdrags- og Energiverk Vassdragsdirektoratet. 1 volume (various (Meddelelse … Hydrologisk Avdeling; vol. 61)). ISBN: 9788241000256 . Text in Norwegian and English.
  • Østrem G, Ziegler T. 1969. Atlas over bree i Sør-Norge: Atlas of glaciers in south Norway. Norges Vassdrags-or Elektrisitetsvesen.
  • Otto J-C. 2019. Proglacial lakes in high mountain environments. In: Heckmann T, Morche D, editors. Geomorphology of proglacial systems: landform and sediment dynamics in recently deglaciated alpine landscapes. Vol. 9. Cham, Switzerland: Springer; p. 231–247 (Geography of the Physical Environment).
  • Outcalt SI, Nelson FE, Hinkel KM. 1990. The zero-curtain effect: heat and mass transfer across an isothermal region in freezing soil. Water Resour Res. 26:1509–1516.
  • Paasche Ø. 2014. Cirque glaciers. In: Singh VP, Singh P, Haritashya UK, editor. Encyclopedia of snow, ice and glaciers. 1st ed. New York [New York], Boston, Massachusetts: Springer; Credo Reference; p. 141–144 (Encyclopedia of earth sciences series). Available from: https://link.springer.com/referenceworkentry/10.1007%2F978-90-481-2642-2_62.
  • Pecher K. 1994. Hydrochemical analysis of spatial and temporal variations of solute composition in surface and subsurface waters of a high Arctic catchment. CATENA. 21:305–327.
  • Pettersson R. 2004. Dynamics of the Cold Surface Layer of Polythermal Storglaciären, Sweden [PhD thesis]. Department of Physical Geography and Quaternary Geology, Stockholm University.
  • Pickard J. 1983. Surface lowering of ice-cored moraine by wandering lakes. J Glaciol. 29:338–342. doi:10.3189/S0022143000008388 .
  • Pietroniro A, Leconte R. 2000. A review of Canadian remote sensing applications in hydrology, 1995–1999. Hydrol Process. 14:1641–1666.
  • Planet Team. 2017. Planet Application Program Interface: In Space for Life on Earth. Available from: https://api.planet.com/.
  • Porter C, Morin P, Howat I, Noh M-J, Bates B, Peterman K, Keesey S, Schlenk M, Gardiner J, Tomko K, et al., cartographers. 2018. ArcticDEM. [place unknown]: Harvard Dataverse. Available from: https://www.pgc.umn.edu/data/arcticdem/.
  • Reinardy BTI, Booth AD, Hughes ALC, Boston CM, Åkesson H, Bakke J, Nesje A, Giesen RH, Pearce DM. 2019. Pervasive cold ice within a temperate glacier – implications for glacier thermal regimes, sediment transport and foreland geomorphology. The Cryosphere. 13:827–843.
  • Richardson S, Reynolds JM. 2000. Degradation of ice-cored moraine dams: implications for hazard development. Debris-covered glaciers (Proceedings of a workshop held at Seattle, Washington, USA, September 2000). IAHS Publ. 264:187–197.
  • Roy JW, Hayashi M. 2009. Multiple, distinct groundwater flow systems of a single moraine–talus feature in an alpine watershed. J Hydrol. 373:139–150.
  • Schomacker A, Kjær KH. 2008. Quantification of dead-ice melting in ice-cored moraines at the high-Arctic glacier Holmströmbreen, Svalbard. Boreas. 37(2):211–225.
  • Sellier D. 2002. Géomorphologie des versants quartzitiques en milieux froids: l’exemple des montagnes de l’Europe du nord-ouest. Paris 1.
  • Sellier D. 2006. Les limites inférieures de l’étage périglaciaire fonctionnel dans les montagnes de la façade atlantique de l’Europe: éléments d’identification à partir de marqueurs morphologiques. Environ Périglaciaires. 31:41–59.
  • Slaymaker O. 2009. Proglacial, periglacial or paraglacial?. Vol. 320. Geological Society London. Special Publications; p. 71–84.
  • Slaymaker O. 2011. Criteria to Distinguish Between Periglacial, Proglacial and Paraglacial Environments. Quaest Geogr. 30:85–94.
  • Sodemann H, Lehner K, Schweizer E, Viste E, Weng Y. 2018. Stable isotope gradients in Southern Norway surface waters indicate moisture sources. In: Geophysical Research Abstracts, Vol. 20. EGU General Assembly.
  • Sollid JL, Isaksen K, Eiken T, Ødegård RS. 2003. The transition zone of mountain permafrost on Dovrefjell, southern Norway. In: Phillips M, Springman SM, Arenson LU, editors. Permafrost: proceedings of the 8th international conference on permafrost, 21–25 July 2003, Zurich, Switzerland. Lisse: Balkema; p. 1085–1090.
  • Sollid JL, Sørbel L. 1998. Palsa bogs as a climate indicator: examples from Dovrefjell, Southern Norway. Ambio. 27:287–291.
  • Song C, Sheng Y, Wang J, Ke L, Madson A, Nie Y. 2017. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology. 280:30–38.
  • Stieglitz M, Déry SJ, Romanovsky VE, Osterkamp TE. 2003. The role of snow cover in the warming of Arctic permafrost. Geophys Res Lett. 30:149.
  • Swithinbank C. 1950. The origin of dirt cones on glaciers. J Glaciol. 1:461–465.
  • Thorn C, Loewenherz DD. 1987. Spatial and temporal trends in alpine periglacial studies: implications for paleo-reconstruction. In: Boardman J, editor. Periglacial processes and landforms in Britain and Ireland. Cambridge: Cambridge University Press; p. 57–65.
  • Tonkin TN, Midgley NG, Cook SJ, Graham DJ. 2016. Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in svalbard. Geomorphology. 258:1–10.
  • Vasil’chuk Y, Alekseev S, Arzhannikov S, Alekseeva L, Budantseva N, Chizhova J, Arzhannikova A, Vasil’chuk A, Kozyreva E, Rybchenko A, Svetlakoc A. 2015. Oxygen and hydrogen isotope composition of lithalsa frozen core: A case study from the sentsa river valley, East Sayan. Earth’s Cryosphere. XIX(2):46–58.
  • Vitvar T, Aggarwal P, McDonnell J. 2005. A review of isotope applications in catchment hydrology. In: Aggarwal P, Froehlich K, Gat J, editor. Isotopes in the water cycle. Past, present and future of a developing science. Dordrecht: International Atomic Energy Agency (IAEA); p. 151–169.
  • Wake LM, Marshall SJ. 2015. Assessment of current methods of positive degree-day calculation using in situ observations from glaciated regions. J Glaciol. 61:329–344.
  • Waller RI, Murton JB, Kristensen L. 2012. Glacier–permafrost interactions: processes, products and glaciological implications. Sediment Geol. 255–256:1–28.
  • Wang W, Xiang Y, Gao Y, Lu A, Yao T. 2015. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrol Process. 29:859–874.
  • Watson RA. 1980. Landform development on moraines of the Klutlan Glacier, Yukon Territory, Canada. Quat Res. 14:50–59.
  • Williams PJ, Smith MW. 1989. The frozen earth. Cambridge: Cambridge University Press. ISBN: 9780511564437 .
  • Wu J, Ding Y, Yang J, Liu S, Chen J, Zhou J, Qin X. 2016. Spatial variation of stable isotopes in different waters during melt season in the Laohugou glacial catchment, Shule River basin. J Mt Sci. 13:1453–1463.
  • Xu D. 1988. Characteristics of debris flow caused by outburst of glacial lake in Boqu river, Xizang, China, 1981. GeoJournal. 17:569–580.
  • Yde JC, Knudsen NT, Steffensen JP, Carrivick JL, Hasholt B, Ingeman-Nielsen T, Kronborg C, Larsen NK, Mernild SH, Oerter H, et al. 2016. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland. Hydrol Earth Syst Sci. 20:1197–1210.
  • Yoshikawa K, Harada K. 1995. Observations on nearshore pingo growth, Adventdalen, Spitsbergen. Permafrost Periglac Process. 6:361–372.