913
Views
0
CrossRef citations to date
0
Altmetric
Articles

Assessment of the TREELIM model in predicting present treeline along a longitudinal continentality-maritimity gradient in south-western Norway

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 90-108 | Received 29 Nov 2021, Accepted 14 Mar 2022, Published online: 25 Apr 2022

References

  • Aas B, Faarlund T. 1988. Postglasiale skoggrenser i sentrale sørnorske fjelltrakter. 14C- datering av subfossile furu- og bjørkerester. [Postglacial forest limits in central south Norwegian mountains. Radiocarbon datings of subfossil pine and birch specimens]. Nor Geogr Tidsskr. 42(1):25–61.
  • Aas B, Faarlund T. 1996. The present and the Holocene subalpine birch belt in Norway. Paleoclimate Res. 20:19–42.
  • Aas B, Faarlund T. 2001. The Holocene history of the Nordic mountain birch belt. In: Wielgolaski FE, editor. Nordic mountain birch ecosystems. New York: UNESCO Paris and The Parthenon Publishing Group.
  • Alatalo JM, Ferrarini A. 2017. Braking effect of climate and topography on global change-induced upslope forest expansion. Int J Biometeorol. 61(3):541–548.
  • Alvarez-Uria P, Körner C. 2007. Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol. 21(2):211–218.
  • Bader MY, Llambí LD, Case BS, Buckley HL, Toivonen JM, Camarero JJ, Cairns DM, Brown CD, Wiegand T, Resler LM. 2021. A global framework for linking alpine-treeline ecotone patterns to undrelying processes. Ecography. 44:265–292.
  • Bandekar G, Dvořák Z, Skeie G, Odland A. 2017. Vegetation, soil-and air temperature studies within alpine treeline ecotones of southern Norway. Oecol Mont. 26:19–33.
  • Beniston M. 2005. Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl Geophys. 162(8):1587–1606.
  • Brinckmann S, Krähenmann S, Bissolli P. 2016. High-resolution daily gridded data sets of air temperature and wind speed for Europe. Earth Syst. Sci Data. 8:491–516.
  • Bruening J, Tran T, Bunn A, Weiss S, Salzer M. 2017. Fine-scale modeling of bristlecone pine treeline position in the Great Basin, USA. Environ Res Lett. 12:014008.
  • Bryn A. 2008. Recent forest limit changes in south-east Norway: effects of climate change or regrowth after abandoned utilisation? Nor Geogr Tidsskr. 62(4):251–270.
  • Bryn A, Dourojeanni P, Hemsing LØ, O'Donnell S. 2013. A high-resolution GIS null model of potential forest expansion following land use changes in Norway. Scand J For Res. 28(1):81–98.
  • Bryn A, Pothoff K. 2018. Elevational treeline and forest line dynamics in Norwegian mountain areas - a review. Landsc Ecol. 33(8):1225–1245.
  • Camarero JJ, Linares JC, García-Cervigón AI, Batllori E, Martínez I, Gutiérrez E. 2017. Back to the future: the responses of alpine treelines to climate warming are constrained by the current ecotone structure. Ecosystems. 20(4):683–700.
  • Crawford RMM. 1997. Oceanicity and the ecological disadvantages of warm winters. Bot J Scotl. 49(2):205–221.
  • Dalen L, Hofgaard A. 2005. Differential regional treeline dynamics in the Scandes Mountains. Arc Antarct Alp Res. 37(3):284–296.
  • Daniels L, Veblen T. 2004. Spatio-temporal influences of climate on altitudinal treeline in Northern Patagonia. Ecology. 85:1284–1296.
  • Dvořák Z. 2013. Floristiske og økologiske forhold ved den alpine skoggrensen i Sør- Norge [Foristic and ecological conditions at the alpine forest border in southern Norway]. Bø i Telemark: Høgskolen i Telemark.
  • EU-DEM Statistical Validation Report. [accessed 2018 Oct 5]. http://land.copernicus.eu/user- corner/technical-library.
  • Fang H, Baiping Z, Yonghui Y, Yunhai Z, Yu P. 2011. Mass elevation effect and its contribution to the altitude of snowline in the Tibetan Plateau and surrounding areas. Arc Antarct Alp Res. 43(2):207–212.
  • Fang K, Gou X, Chen F, Peng J, D’Arrigo R, Wright W, Li M-H. 2009. Response of regional tree-line forests to climate change: evidence from the northeastern Tibetan plateau. Trees. 23(6):1321–1329.
  • Førland E. 1979. Nedbørens høydeavhengighet [The height dependence of precipitation]. Klima. 2:3–24.
  • Hanssen-Bauer I, Førland E, Haddeland I, Hisdal H, Lawrence D, Mayer S, Nesje A, Nilsen JE, Sandven S, Sandø A, et al. 2017. Climate in Norway 2100 - A knowledge base for climate adaptation. Norwegian Cenre for Climate Services. 1.
  • Hansson A, Dargusch P, Shulmeister J. 2021. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J Mt Sci. 18(2):291–306.
  • Høgda KA, Karlsen SR, Solheim I. 2001. Climate change impact on growing season in Fennoscandia studied by a time series of NOAA AHHRR NDVI data. Scanning the present and resolving the future. IEEE Operations Center 2001. III:1338- 1340. Piscataway, NJ.
  • Holtmeier FK. 2003. Mountain timberlines: ecology, patchiness, and dynamics. Vol. 14. Dordrecht: Kluwer Academic Publishers.
  • Holtmeier F-K, Anschlag K, Broll G, Brauckmann H-J. 2008. Mountain birch, tree line and climate change. Ger Res. 30:25–28.
  • Holtmeier FK, Broll G. 2017. Treelines—approaches at different scales. Sustainability. 9(5):808.
  • Irl SDH, Anthelme F, Harter DEV, Jentsch A, Lotter E, Steinbauer MJ, Beierkuhnlein C. 2016. Patterns of island treeline elevation - a global perspective. Ecography. 39(5):427–436.
  • Jobbagy EG, Jackson RB. 2000. Global controls of forest line elevation in the northern and southern hemispheres. Glob Ecol Biogeogr. 9(3):253–268.
  • Jochner M, Bugmann H, Nötzli M, Bigler C. 2017. Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps. Ecol Evol. 7(19):7937–7953.
  • Jochner M, Bugmann H, Nötzli M, Bigler C. 2018. Tree growth responses to changing temperatures across space and time: a fine-scale analysis at the treeline in the Swiss Alps. Trees. 32:645–660.
  • Karger DN, Kessler M, Conrad O, Weigelt P, Kreft H, König C, Zimmermann NE. 2019. Why tree lines are lower on islands—climatic and biogeographic effects hold the answer. Glob Ecol Biogeogr. 28(6):839–850.
  • Kartverket. 2016. Produktspesifikasjon FKB-AR5 4.6. Oslo, Norway.
  • Kartverket. 2017. Produktspesifikasjon for N50 Kartdata. Oslo, Norway.
  • Körner C. 2007. Climatic treelines: conventions, global patterns, causes. Erdkunde. 61:316–324.
  • Körner C. 2012a. Alpine treelines: functional ecology of the global high elevation tree limits. Basel: Springer.
  • Körner C. 2012b. Treelines will be understood once the functional difference between a tree and a shrub is. Ambio. 41(S3):197–206.
  • Körner C. 2021. The cold range limit of trees. Trends Ecol Evol. 2878:1–11.
  • Körner C, Paulsen J. 2004. A world-wide study of high altitude treeline temperatures. J Biogeogr. 31(5):713–732.
  • Kullman L. 1998. Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability. Ambio. 27:312–321.
  • Kullman L. 2010. One century of treeline change and stability - experiences from the Swedish scandes. Landscape. 17:1–31.
  • Kullman L. 2016. Pine (Pinus sylvestris L.) penetration towards the head of the Handolan Valley: recent reversal of long-term retrogressional trend-contrasting responses to climate change of tree-and forest line. Geoinformatics & Geostat. 4:163–172.
  • Kullman L. 2021. Soil temperatures at the birch treeline (Betula pubsescens ssp. czerepanovii) - a 21-year record in the Swedish scandes and a contribution to general treeline theory. Int J Sci Res. 2(2):172–182.
  • Loranger H, Zotz G, Bader M. 2016. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions. AoB PLANTS. 8:plw053.
  • Lussana C, Saloranta T, Skaugen T, Magnusson J, Tveito OE, Andersen J. 2018a. Senorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day. Earth Syst Sci Data. 10(1):235–249.
  • Lussana C, Tveito OE, Uboldi F. 2018b. Three-dimensional spatial interpolation of 2 m temperature over Norway. Q J R Meteorol Soc. 144(711):344–364.
  • Ma J, Li H, Wang J, Hao X, Shao D, Lei H. 2020. Reducing the statistical distribution error in gridded precipitation data for the Tibetan plateau. J Hydrometeorol. 21(11):2641–2654.
  • Macias-Fauria M, Johnson EA. 2013. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc Natl Acad Sci USA. 110(20):8117–8122.
  • Moen A. 1999. National atlas of Norway: vegetation. Hønefoss: Norwegian Mapping Authority.
  • Moore P, Alvarez O, McKinney S, Li W, Brooks M, Guo Q. 2017. Climate change and tree-line ecosystems in the Sierra Nevada: habitat suitability modeling to inform high-elevation forest dynamics monitoring. Natural Resource Report NPS/SIEN/NRR—2017/1476. Fort Collins, CO: National Park Service.
  • Öberg L, Kullman L. 2012. Contrasting short-term performance of mountain birch (Betula pubescens ssp. czerepanovii) treeline along a latitudinal continentality- maritimity gradient in the southern Swedish scandes. Fennia. 190(1):19–40.
  • Odland A. 1996. Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. In: Frenzel B, editor. Holocene treeline oscillations, dendrochronology and paleoclimate. Stuttgart: Gustav Fischer; p. 43–59.
  • Odland A. 2010. Importance of mountain height and latitude for the altitudinal distribution limits of vascular plants in scandinavia: are the mountains high enough? Fennia. 188(2):149–162.
  • Odland A. 2011. Estimation of the growing season length in alpine areas: effects of snow and temperatures. In: Schmidt J, editor. Alpine environment: geology, ecology, and conservation. New York: Nova Science Publishers; p. 85–134.
  • Odland A. 2021. Fjelløkologi: klimaeffekter på vegetasjon og flora I fortid, nåtid og fremtid. Rådal: Fenris Forlag.
  • Odland A, Munkejord HK. 2008. Plants as indicators of snow layer duration in southern Norwegian mountains. Ecol Indic. 8(1):57–68.
  • Paulsen J, Körner C. 2014. A climate-based model to predict potential treeline position around the globe. Alp Bot. 124(1):1–12.
  • Paus A, Haugland V. 2017. Early- to mid-Holocene forest-line and climate dynamics in southern Scandes mountains inferred from contrasting megafossil and pollen data. Holocene. 27(3):361–383.
  • Reistad M, Breivik O, Haakenstad H, Aarnes O, Furevik B, Bidlot J. 2011. A high- resolution hindcast of wind and waves for the North Sea, the Norwegian Sea and the Barents Sea. J Geophys Res. 116:1–18.
  • Richardson AD, Friedland AJ. 2009. A review of the theories to explain Arctic and alpine treelines around the world. J Sustain For. 28(1-2):218–242.
  • Schickhoff U. 2005. The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll G, Keplin B, editors. Mountain ecosystems: studies in treeline ecology. New York: Springer; p. 275–354.
  • Schwörer C, Gavin DG, Walker IR, Hu FS. 2017. Holocene tree line changes in the Canadian Cordillera are controlled by climate and topography. J Biogeogr. 44(5):1148–1159.
  • Smith W, Germino M, Johnson D, Reinhardt K. 2009. The altitude of alpine treeline: a bellwether of climate change effects. Bot Rev. 75:163–190.
  • Tran T, Bruening J, Bunn A, Salzer M, Weiss S. 2017. Cluster analysis and topoclimate modeling to examine bristlecone pine tree-ring growth signals in the Great Basin, USA. Environ Res Lett. 12:014007.
  • Tuhkanen S. 1993. Treeline in relation to climate, with special reference to oceanic areas. In: Alden JN, Mastrantonio JL, Ødum S, editors. Forest development in cold climates. Boston, MA: Springer US; p. 115–134.
  • Wang J, Zhang B, He W, Yao Y, Zhang W, Zhao C. 2017a. A quantitative study on the mass elevation effect of the Rocky Mountains and its significance for treeline distribution. Phys Geogr. 38:1–17.
  • Wang Y, Liang E, Sigdel SR, Liu B, Camarero JJ. 2017b. The coupling of treeline elevation and temperature is mediated by non-thermal factors on the Tibetan Plateau. Forests. 8(4):109.
  • Wielgolaski FE, Hofgaard A, Holtmeier FK. 2017. Sensitivity to environmental change of the treeline ecotone and its associated biodiversity in European mountains. Clim Res. 73(1 & 2):151–166.
  • Wielgolaski FE, Karlsen SR, Høgda KA. 2004. Plant phenology in Norway related to climate change and latitude. In: van Vliet AJH, editor. Proceedings of the international conference “Challenging Times”, April 2003. Wageningen, The Netherlands. p. 96–102.
  • Wielgolaski FE, Sonneson M. 2001. Nordic mountain birch ecosystems – a conceptual overview. In: Wielgolaski FE, editor. Nordic mountain birch ecosystems. New York: UNESCO Paris and The Parthenon Publishing Group; p. 377–384.
  • Zeng Y, Malanson G. 2006. Endogenous fractal dynamics at alpine treeline ecotones. Geogr Anal. 38:271–287.
  • Zhang B, Yao Y. 2016. Implications of mass elevation effect for the altitudinal patterns of global ecology. J Geogr Sci. 26:871–877.