Publication Cover
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Volume 25, 1996 - Issue 1
4
Views
5
CrossRef citations to date
0
Altmetric
I. Introduction and overview

Aquatic cycling and hydrosphere to troposphere transport of reduced trace gases — A review

Pages 1-13 | Published online: 01 Dec 2017

References

  • Adams, D. D. & Fendinger, N. J., 1986: Early diagenesis of organic matter in the Recent sediments of Lake Erie and Hamilton Harbour. I. Carbon gas geochemistry. — In: Sly, P. G. (ed.): Sediments and Water Interactions. 305–318. — Springer-Verlag, New York, NY.
  • Adams, D. D. & van Eck, G. Th. M., 1988: Biogeochemical cycling of organic carbon in the sediments of the Grote Rug reservoir. — Arch. Hydro- biol. Beih. Ergebn. Limnol. 31: 319–330.
  • Adams, D. D., Naguib, M. & Brown, D. H., 1987: Cycling of methane in acidified freshwater environments. — In: Perry, R., Harrison, R. M., Bell, J. N. B. & Lester, J. N. (eds.) Acid Rain: Scientific and Technical Advances: 451–456. — Selper Ltd., London, UK.
  • Andreae, M. O., 1992: The global biogeochemical sulfur cycle: A review. — In: Moore, B. & Schimel, D. (eds.): Trace Gases and the Biosphere. 1: 87–128. — UCAR/Office for Interdisciplinary Earth Studies, Boulder, CO.
  • Andreae, M. O. & Jaeschke, W. A., 1992: Exchange of sulphur between biosphere and atmosphere over temperature and tropical regions. — In: Howarth, R. W., Stewart, J. W. B. & Ivanov, M. V. (eds.): Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies. SCOPE 48: — John Wiley and Sons, New York, NY.
  • Andreae, M. O. & Schimel, D. S. (eds.) 1989: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. — John Wiley and Sons, New York, NY.
  • Aselmann, I. & Crutzen, P. J., 1989: Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. — Atmos. Chem. 8: 307–358.
  • Baker-Blocker, A., Donahue, T. M. & Mancy, K. H., 1977: Methane flux from wetland areas.Tellus 29: 245–250.
  • Barber, T. R., Burke R. A. & Sackett, W. M., 1988: Diffusive flux of methane from warm wetlands. — Global Biogeochemical Cycles 2: 411–425.
  • Barica, J., 1989: Report — Unique limnological phenomena affecting water quality of Hamilton Harbour, Lake Ontario.— J. Great Lakes Res. 15: 519–530.
  • Bartlett, K. B. & Harriss, R. C., 1993: Review and assessment of methane emissions from wetlands. — Chemosphere 26: 261–320.
  • Bates, T. S. & Lamb, B. K., 1992: Natural sulfur emissions to the atmosphere of the continental United States. — Global Biogeochemical Cycles 6: 431–435.
  • Bartlett, K. B., Crill, P. M., Bonassi, J. A., Richey, J. E. & Harriss, R. C., 1990: Methane flux from the Amazon floodplain: emissions during rising water: — J. Geopbys. Res. 95: 16,773–16,788.
  • Bartlett, K. B., Crill, P. M., Sas, R. L., Harriss, R. C. & Dise, N. B., 1992: Methane emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska. — J. Geophys. Res. 97: 16,645–16,660.
  • Boone, D. R., 1991: Ecology of methanogenesis. — In: Rogers, J. E. & Whitman, W. B. (eds.): Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. — Amer. Soc. Microbiology; 57–70, Washington, DC.
  • Bouwman, A. E, 1990a: Introduction, — In: Bouwman, A. E (ed.): Soils and the Greenhouse Effect; 25–32, John Wiley and Sons, New York, NY.
  • Bouwman, A. E, 1990b: Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere, — In: Bouwman, A. F. (ed.): Soils and the Greenhouse Effect. 61–192; John Wiley and Sons, New York, NY.
  • Bouwman, A. E, 1990c: Soils and the Greenhouse Effect, John Wiley and Sons, New York, NY.
  • Bowden, W. B., 1986: Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: An assessment of their impacts on local and global nitrogen budgets. — Biogeochemistry 2: 249–279.
  • Bowden, W. B., 1987: The biogeochemistry of nitrogen in freshwater wetlands. — Biogeochemistry 4: 313–348.
  • Brimblecombe, P. & Lein, A. Y. (eds.), 1989: Evolution of the Global Biogeochemical Sulphur Cycle. SCOPE 39. — John Wiley and Sons, New York, NY.
  • Brimblecombe, P., Hammer, C, Rodhe, H., Rya-Boshapko, A. & Boutronin, C. F., 1989: Human influence on the sulphur cycle, pp. 77–121. In: Brimblecome, P. & Lein, A. Y. (eds.), Evolution of the Global Biogeochemical Sulphur Cycle. SCOPE 39, John Wiley and Sons, New York, NY.
  • Brown, A., Mathur, S. P. & Kushner, D. J., 1989: An ombrotrophic bog as a methane reservoir. — Global Biogeochem. Cycles 3: 205–213.
  • Butler, J. H., Jones, R. D., Garber, J. H. & Gordon, L. I., 1987: Seasonal distributions and turnover of reduced gases and hydroxylamine in Yaquina Bay, Oregon. — Geochim. Cosmochim. Acta 51: 697–706.
  • Capone, D. G. & Kiene, R. P., 1988: Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism. — Limnol. Oceanogr. 33: 725–749.
  • Carroll, M. A., Heidt, L. E., Cicerone, R. J. & Prinn, R. G., 1986: OCS, H2S, and CS2 fluxes from a salt water marsh. — J. Atmos. Chem. 4: 375–395.
  • Cicerone, R. J. & Oremland, R. S., 1988: Biogeochemical aspects of atmospheric methane. — Global Biogeochemical Cycles 2: 299–327.
  • Colberg, P. J., 1988: Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. — In: Zehnder, A. J. B. (ed.): Biology of Anaerobic Microorganisms: 333–372. — John Wiley and Sons, New York, NY.
  • Conrad, R., 1988: Biogeochemistry and ecophysiology of atmospheric CO and H2. — In: Marshall, K. C. (ed.): Advances Microbial Ecology. 231–283. Plenum Press, New York, NY.
  • Conrad, R., 1989: Control of methane production in terrestrial ecosystems. — In: Andreae, M. O. & Schimel, D. S. (eds.): Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere: 39–58. — John Wiley and Sons, New York, NY.
  • Conrad, R. & Babbel, M., 1989: Effect of dilution on methanogenesis, hydrogen turnover and interspecies hydrogen transfer in anoxic paddy soil. — FEMS Microbiology Ecology 62: 21–28.
  • Conrad, R., Aragno, M. & Seiler, W., 1983: Production and consumption of hydrogen in a eutrophic lake. — Appl. Environ. Microbiol. 45: 502–510.
  • Conrad, R., Lupton, F. S. & Zeikus, J. G., 1987 a: Hydrogen metabolism and sulfate-dependent inhibition of methanogenesis in a eutrophic lake sediment (Lake Mendota). — FEMS Microbiol. Ecology 45: 107–115.
  • Conrad, R., Schutz, H. & Babbel, M., 1987 b: Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. — FEMS Microbiol. Ecology 45: 281–289.
  • Conrad, R., Mayer, H.-P. & Wust, M., 1989 a: Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy soil. — FEMS Microbiol. Ecology 62: 265–274.
  • Conrad, R., Bak, F., Seitz, H. J., Thebrath, B., Mayer, H. P. & Schutz, H., 1989 b: Hydrogen turnover by psychotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. — FEMS Microbiol. Ecology 62: 285–294.
  • Cook, R. B. & Kelly, C. A., 1992: Sulphur cycling and fluxes in temperate dimictic lakes. — In: Howarth, R. W., Stewart, J. W. B. & Ivanov, M. V. (eds.): Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies. SCOPE 48: 145–188. — John Wiley and Sons, New York, NY.
  • Cord-Ruwisch, R., Seitz, H.-J. & Conrad, R., 1988: The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of terminal electron acceptor. — Arch. Microbiol. 149: 350–357.
  • Crill, P. M., Harriss, R. C. & Bartlett, K. B., 1991: Methane fluxes from terrestrial wetland environments. — In: Rogers, J. E. & Whitman, W. B. (eds.): Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. — Amer. Soc. Microbiology; 91–109. — Washington, DC.
  • Crill, P. M., Bartlett, K. B., Harriss, R. C., Gorham, E., Verry, E. S., Sebacher, D. I., Madzar, L. & Sanner, W., 1988: Methane flux from Minnesota peatlands. — Global Biogeochemical Cycles 2: 371–384.
  • Dacey, J. W. H., King, G. M. & Wakeman, S. G., 1987: Factors controlling emission of dimethylsulphide from salt marshes. — Nature 330: 643–645.
  • Devol, A. H., Richey, J. E., Clark, W. A. & King, S. L., 1988: Methane emissions to the troposphere from the Amazon floodplain. — J. Geophys. Res. 93: 1583–1592.
  • Fechner, E. J. & Hemond, H. F., 1992: Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland. — Global Biogeochemical Cycles 6: 33–44.
  • Frenzel, P., Thebrath, B. & Conrad, R., 1990: Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). — FEMS Microbiology Ecology 73: 149–158.
  • Freyer, H. D., 1978: Preliminary 15N studies on atmospheric nitrogenous trace gases. — Pure and Applied Geophysics 116: 393–404.
  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Stelle, L. P. & Fraser, P. J., 1991: Three-dimensional model synthesis of the global methane cycle. — J. Geophys. Res. 96: 13033–13065.
  • Galchenko, V. F., Lein, A. & Ivanov, M., 1989: Biological sinks of methane: — In: Andreae, M. O. & Schimel, D. S. (eds.): Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. 59–71. — John Wiley and Sons, New York, NY.
  • Gammon, R. H. & Charlson, R. J., 1993: Origins, atmospheric transformations and fate of biologically exchanged C, N and S gases. — In: Wollast, R., Mackenzie, F. T. & Chou, L. (eds.): Interactions of C, N, P and S Biogeochemical Cycles and Global Change: 283–304. — Springer-Verlag, Berlin, Germany.
  • Giblin, A. E. & Wieder, R. K., 1992: Sulphur cycling in marine and freshwater wetland, — In: Howarth, R. W, Stewart, J. W. B. & Ivanov, M. V. (eds.): Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies. SCOPE 48: 85–117. John Wiley and Sons, New York, NY.
  • Goeyens, L., Devries, R. T. P., Bakker, J. F. & Helder, W., 1987: An experiment on the relative importance of denitrification, nitrate reduction and ammonification in coastal marine sediment. — Netherlands J. Sea Res. 21: 171–175.
  • Goodwin S. & Zeikus, J. G., 1987: Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. — Appl. Environ. Microbiol. 53: 57–64.
  • Guenther, A., Lamb, B. & Westberg, H., 1989: U.S. national biogenic sulfur emissions inventory. — In: Saltzman, E. S. & Cooper, W. J. (eds.): Biogenic Sulfur in the Environment, ACS Symposium Series 393. — Amer. Chemical Soc.: 14–30. — Washington, DC.
  • Harriss, R. C. & Frolking, S. E., 1992: The sensitivity of methane emissions from northern freshwater wetlands to global warming, — In: Firth, P. & Fisher, S. G. (eds.): Global Climate Change and Freshwater Ecosystems: 48–67. — Springer-Verlag, New York, NY.
  • Hemond, H. F., Army, T. P., Nuttle, W. K. & Chen, D. G., 1987: Element cycling in wetlands: Interactions with physical mass transport. — In: Hites, R. A. Eisenreich, S. J. (eds.): Sources and Fates of Aquatic Pollutants. — Adv. Chem. Series 216, Amer. Chem. Soc.: 519–537. — Washington, DC.
  • Higgins, I. J., Best, D. J., Hammond, R. C. & Scott, D., 1981: Methane-oxidizing microorganisms. — Microbiological Rev. 45: 556–590.
  • Howarth, R. W., Stewart, J. W B. & Ivanov, M. V. (eds.) 1992: Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems and Associated Water Bodies, SCOPE 48. — John Wiley and Sons, New York, NY.
  • Ivanov, M. V. & Freney, J. R. (eds.) 1983: The Global Biogeochemical Sulphur Cycle. SCOPE 19. — John Wiley and Sons, New York, NY.
  • Jellison, R., Miller, L. G., Melack, J. M. & Dana, G. L., 1993: Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. — Limnol. Oceanogr. 38: 1020–1039.
  • Jones, W. J., 1991: Diversity and physiology of methanogens. — In: Rogers, J. E. & Whitman, W. B. (eds.): Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes: 39–55. — Amer. Soc. Microbiology, Washington, DC.
  • Jones, J. G., Simon, B. M. & Horsley, R. W, 1982: Microbiological sources of ammonia in freshwater lake sediments. — J. General Microbiol. 128: 2833–2831.
  • Jørgensen, B. B. & Okholm-Hansen, B., 1985: Emissions of biogenic sulfur gases from a Danish estuary. — Atoms. Emir. 19: 1737–1749.
  • Junge, E., 1974: Chairman, International Symposium on Trace Gases. — Tellus 26: 1–298.
  • Kaplan, I. R. (ed.) 1974: Natural Gases in Marine Sediments. — Plenum Press, New York, NY.
  • Khalil, M. A. K. & Rasmussen, R. A., 1984: Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the earth's atmosphere. — Atoms. Environment 18: 1805–1813.
  • Kiene, R. P., 1991: Production and consumption of methane in aquatic systems. — In: Rogers, J. E. & Whitman, W. B. (eds.): Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. — Amer. Soc. Microbiology: 111–146. — Washington, DC.
  • Kiene, R. P. & Capone, D. G., 1988: Microbial transformations of methylated sulfur compounds in anoxic salt marsh sediments. — Microbial Ecology 15: 275–291.
  • Kiene, R. P., Oremland, R. S., Catena, A. A., Miller, L. G. & Capone, D. G., 1986: Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. — Applied Environ. Microbiol. 52: 1037–1045.
  • King, G. M., 1990: Regulation by light of methane emissions from a wetland. — Nature 345: 513–515.
  • Koyama, T., 1990: Gases in lakes, their production mechanism and degassing (CH4 and H2) of the earth. — In: Geochemistry of Gaseous Elements and Compounds: 271–335. — Theophrastus Publications, S.A., Zographou, Athens, Greece.
  • Krouse, H. R. & Grinenko, V. A. (eds.) 1991: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment. SCOPE 43. — John Wiley and Sons, New York, NY.
  • Kuivila, K. M., Murray, J. W. & Devol, A. H., 1989: Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. — Geochim. Cosmochim. Acta 53: 409–416.
  • Kuivila, K. M., Murray, J. W., Devol, A. H., Lidstrom, M. E. & Reimers, C. E., 1988: Methane cycling in the sediments of Lake Washington. — Limnol. Oceanogr. 33: 571–581.
  • Langford, A. O., Fehsenfeld, E C, Zachariassen, J. & Schimel, D. S., 1992: Gaseous ammonia fluxes and background concentrations in terrestrial ecosystems of the United States. — Global Biogeochemical Cycles 6: 459–483.
  • Lidstrom, M. E. & Somers, L., 1984: Seasonal study of methane oxidation in Lake Washington. — Applied Environ. Microbiol. 47: 1255–1260.
  • Lovley, D. R. & Goodwin, S., 1988: Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. — Geochim. Cosmochim. Acta 52: 2993–3003.
  • Lovley, D. R., Dwyer, D. F. & Klug, M. J., 1982: Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. — Appl. Environ. Microbiol. 43, 1373–1379.
  • Martikainen, P. J., Nykanen, H. & Silvola, J., 1992: Emissions of methane and nitrous oxide from peat ecoystems. — In: Kanninen, M. & Anttila, P. (eds.): The Finnish Research Programme on Climate Change (SILMU). — Progress Report: 199–204. — Painatuskeskus Oy, Helsinki, Finland.
  • Michener, R. H., Scranton, M. I. & Novelli, P., 1988: Hydrogen (H2) distributions in the Carmans River estuary. — Estuarine, Coastal and Shelf Science 27: 223–235.
  • Mikkela, C., Sundh, I., Eilertsson, J., Svensson, B. H. & Nilsson, M., 1992: Methane emissions from a Swedish peatland area: temporal and spatial variation. — Proceedings Intern. Peat Congress, Uppsala, Sweden.
  • Miller, T. L., 1991: Biogenic sources of methane. — In: Rogers, J. E. & Whitman, W. B. (eds.): Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. — Amer. Soc. Microbiology: 175–187. — Washington, DC.
  • Moodie, A. D. & Ingledew, W. J., 1990: Microbial anaerobic respiration. — In: Rose, A. H. & Tempest, D. W. (eds.): Advances in Microbial Physiology 31: 225–269. — Academic Press, London, UK.
  • Mooney, H. A., Vitousek, P. M. & Matson, P. A., 1987: Exchange of materials between terrestrial ecosystems and the atmosphere. Science 238: 926–932.
  • Moore, B. & Schimel, D. (eds.) 1992: Trace Gases and the Biosphere. 1, UCAR/Office for Interdisciplinary Earth Studies, Boulder, CO.
  • Moore, T. R. & Knowles, R., 1989: The influence of water table levels on methane and carbon dioxide emissions from peatland soils. — Can. J. Soil Sci. 69: 33–38.
  • Moore, T. R. & Knowles, R., 1990: Methane emissions from fen, bog and swamp peatlands in Quebec. — Biogeochemistry 11: 45–61.
  • Moore, T., Roulet, N. & Knowles, R., 1990: Spatial and temporal variations of methane flux from subarctic/northern boreal fens. — Global Biogeochemical Cycles 4: 29–46.
  • Nedwell, D. B., 1984: The input and mineralization of organic carbon in anaerobic aquatic sediments. — In: Marshall, K. C. (ed.): Advances Microbial Ecology: 93–131. — Plenum Press, New York, NY.
  • Nilsson, M., 1992: Fungi and bacteria in peat and peat forming plant communities. — Ph. D. Dissertation. Swedish Univ. Agricultural Sciences, Umea, Sweden.
  • Nriagu, J. O. & Holdway, D. A., 1989: Production and release of dimethyl sulfide from the Great Lakes. — Tellus 41B: 161–169.
  • Oremland, R. S., 1988: Biogeochemistry of methanogenic bacteria, — In: Zehnder, A. J. B. (ed.): Biology of Anaerobic Microorganisms. 641–705. — John Wiley and Sons, New York, NY.
  • Phelps, T. J. & Zeikus, J. G., 1984. Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. — Appl. Environ. Microbiol. 48: 1088–1095.
  • Rasmussen, R. A. & Khalil, M. A. K., 1981: Atmospheric methane (CH4): trends and seasonal cycles. — J. Geophys. Res. 86: 9826–9832.
  • Reeburgh, W. S. & Alperin, M. J., 1988: Studies on anaerobic methane oxidation. SCOPE/UNF.P. — Mitt. Geol.-Palaeont. Inst., Univ. Hamburg, Sonderband 66: 367–375.
  • Rogers, J. E. & Whitman, W. B. (eds.) 1991: Microbial Production and Consumpton of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. — Amer. Soc. Microbiology, Washington, DC.
  • Rudd, J. W. M. & Hamilton, R. D., 1978: Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. — Limnol. Oceanogr. 23: 337–348.
  • Rudd, J. W. M. & Taylor, C. D., 1980: Methane cycling in aquatic environments. — In: Droop, M. R. & Jannasch, H. W. (eds.): Advances Aquatic Microbiol. 2: 77–150. — Academic Press, New York, NY.
  • Schlege, H. G., 1974: Production, modification and consumption of atmospheric trace gases by microorganisms. — Tellus 26: 11–20.
  • Schlegel, H. G., Gottschalk, G. & Pfenning, N. (eds.) 1976: Symposium on Microbial Production and Utilization of Gases (H2, CH4, CO). — E. Goltze, KG, Gottingen, Germany.
  • Schlesinger, W. H. & Hartley, A. E., 1992: A global budget for atmospheric NH3. — Biogeochemistry 15: 191–211.
  • Schutz, H. & Seiler, W., 1989: Methane flux measurements: Methods and results. — In: Andreae, M. O. & Schimel, D. S. (eds.): Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. 209–228. — John Wiley and Sons, New York, NY.
  • Schutz, H., Conrad, R., Goodwin, S. & Seiler, W., 1988: Emission of hydrogen from deep and shallow freshwater environments. — Biogeochemistry 5: 295–311.
  • Seiler, W. & Conrad, R., 1987: Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO, and N2O. — In: Dickinson, R. E. (ed.): The Geophysiology of Amazonia: Vegetation and Climate Interactions. 133–160. — John Wiley and Sons, New York, NY.
  • Shotyk, W., 1989: An overview of the geochemistry of methane dynamics in mires. — Intern. Peat J. 3: 25–44.
  • Smith, L. K. & Lewis, W. M., 1992: Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies. — Global Biogeochemical Cycles 6: 323–338.
  • Sørensen, J., 1988: Dimethylsulfide and methane thiol in sediment porewater of a Danish estuary. — Biogeochemistry 6: 201–210.
  • Steudler, P. A. & Peterson, B. J., 1984: Contribution of gaseous sulphur from salt marshes to the global sulphur cycle. Nature 311: 455–457.
  • Steudler, P. A. & Peterson, B. J., 1985: Annual cycle of gaseous sulfur emissions from a New England Spartina alterniflora marsh. — Atoms Envir. 19: 1411–1416.
  • Svensson, B. H., 1984: Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. — Appl. Environ. Microbiol. 48: 389–394.
  • Thompson, T. E., Conrad, R. & Zeikus, J. G., 1984: Regulation of carbon and electron flow in Propionispira arboris: physiological function of hydrogenase and its role in homopropionate formation. — FEMS Microbiol. Letters 22: 265–271.
  • Tjepkema, J. D., Cartica, R. J. & Hemond, H. F., 1981: Atmospheric concentration of ammonia in Massachusetts and depositions on vegetation. — Nature 294: 445–446.
  • Topp, E. & Hanson, R. S., 1991: Metabolism of radiatively important trace gases by methane-oxidizing bacteria. — In: Rogers, J. E. & Whitman, W. B. (eds.): Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. 71–90. — Amer. Soc. Microbiology, Washington, DC.
  • Turner, S. M. & Liss, P. S., 1985: Measurements of various sulphur gases in a coastal marine environment. — J. Atmos. Chem. 2: 223–232.
  • Tyler, S. C., 1991: The global methane budget. — In: Rogers, J. E. & Whitman, W. B. (eds): Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. — Amer. Soc. Microbiology: 7–38. — Washington, DC.
  • Verdouw, H. & Dekkers, E. M. J., 1982: Nitrogen cycle of Lake Vechten: concentration patterns and internal mass-balance. — Hydrobiologia 95: 191–197.
  • Vogels, G. D., Keltjens, J. T. & Van Der Drift, C., 1988: Biochemistry of methane production. — In: Zehnder, A. J. B. (ed.): Biology of Anaerobic Microorganisms: 707–770. — John Wiley and Sons, New York, NY.
  • Watson, R., Rodhe, H., Oeschger, H. & Siegenthaler, U., 1990: Greenhouse gases and aerosols. — In: Houghton, J., Jenkins, G. & Ephraums, J. (eds.): Climate Change: the IPCC Assessment WMO/UNEP. 1–14. — Cambridge Univ. Press, U.K.
  • Whalen, S. C. & Reeburgh, W. S., 1990: A methane flux transect along the trans-Alaska pipeline haul road. — Tellus 42B: 237–249.
  • Whalen, S. C. & Reeburgh, W. S., 1992: Interannual variations in tundra methane emission: A 4-year time series at fixed sites. — Global Biogeochemical Cycles 6: 139–159.
  • Whitman, W. B. & Rogers, J. E., 1991: Research needs in the microbial production and consumption of radiatively important trace gases. — In: Rogers, J. E. & Whitman, W. B. (eds.): Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes: 287–291. — Amer. Soc. Microbiology, Washington, DC.
  • Winfrey, M. R., 1984: Microbial production of methane. — In: Atlas, R. M. (ed.): Petroleum Microbiology: 153–219. — Macmillan, New York, NY.
  • Wollast, R., Mackenzie, F. T. & Chou, L. (eds.) 1993: Interactions of C, N, P and S Biogeochemical Cycles and Global Change. — Springer-Verlag, Berlin, Germany.
  • Zehnder, A. J. B. & Stumm, W., 1988: Geochemistry and biogeochemistry of anaerobic habitats. — In: Zehnder, A. J. B. (ed.): Biology of Anaerobic Microorganisms: 1–38. — John Wiley and Sons, New York, NY.
  • Zeikus, J. G., 1977: The biology of methanogenic bacteria. — Bacteriological Reviews 41: 514–541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.