Publication Cover
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Volume 25, 1996 - Issue 1
3
Views
3
CrossRef citations to date
0
Altmetric
I. Introduction and overview

Anaerobic hydrogen metabolism in aquatic sediments

Pages 15-24 | Published online: 01 Dec 2017

References

  • Adams, M. W. W., Mortenson, L. E. & Chen, J. S., 1981: Hydrogenase. — Biochim. Biophys. Acta. 594: 105–176.
  • Alperin, M. J. & Reeburgh, W. S., 1984: Geochemical observations supporting anaerobic methane oxidation. — In: Crawford, R. L. & Hanson, R. S. (eds.) Microbial Growth on C1 Compounds: 282–289. — American Society for Microbiology, Washington, D.C.
  • Bott, M., Eikmanns, B. & Thauer, R. K., 1986: Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate- grown Methanosarcina barkeri. — Eur. J. Biochem. 159: 393–398.
  • Capone, D. G. & Kiene, R. P., 1989: Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism. — Limnol. Oceanogr. 33: 725–749.
  • Conrad, R., 1988: Biogeochemistry and ecophysiology of atmospheric CO and H2. — Adv. Microb. Ecol. 10: 231–283.
  • Conrad, R., 1989a: Control of methane production in terrestrial ecosystems. — In: Andreae, M. O. & Schimel, D. S. (eds.): Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. — Dahlem Konferenzen: 39–58. Wiley, Chichester.
  • Conrad, R., 1989b: Activity of methanogenic bacteria in anoxic sediments: role of H2-syntrophic methanogenic bacterial associations. — In: Hattori, T., Ishida, Y., Maruyama, Y., Morita, R. I. & Uchida, A. (eds.): Recent Advances in Microbial Ecology: 118–122. — Japan Scientific Societies Press, Tokyo.
  • Conrad, R. & Babbel, M., 1989: Effect of dilution on methanogenesis, hydrogen turnover and interspecies hydrogen transfer in anoxic paddy soil. — FEMS Microbiol. Ecol. 62: 21–27.
  • Conrad, R. & Schütz, H., 1988: Methods of studying methanogenic bacteria and methanogenic activities in aquatic environments. — In: Austin, B. (ed.) Methods in Aquatic Bacteriology: 301–343. — Wiley, Chichester.
  • Conrad, R. & Seiler, W., 1988: Methane and hydrogen in seawater (Atlantic Ocean). — Deep-Sea Res. 35: 1903–1917.
  • Conrad, R. & Wetter, B., 1990: Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. — Arch. Microbiol. 155: 94–98.
  • Conrad, R., Aragno, M. & Seiler, W., 1983: Production and consumption of hydrogen in a eutrophic lake. — Appl. Environ. Microbiol. 45: 502–510.
  • Conrad, R., Phelps, T. J. & Zeikus, J. G., 1985: Gas metabolism evidence in support of juxtapositioning between hydrogen producing and methanogenic bacteria in sewage sludge and lake sediments. — Appl. Environ. Microbiol. 50: 595–601.
  • Conrad, R., Schink, B. & Phelps, T. J., 1986: Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. — FEMS Microbiol. Ecol. 38: 353–360.
  • Conrad, R., Goodwin, S. & Zeikus, J. G., 1987a: Hydrogen metabolism in a mildly acidic lake sediment (Knaack Lake). — FEMS Microbiol. Ecol. 45: 243–249.
  • Conrad, R., Schütz, H. & Babbel, M., 1987b: Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. — FEMS Microbiol. Ecol. 45: 281–289.
  • Conrad, R., Bak, E, Seitz, H. J., Thebrath, B., Mayer, H. P. & Schütz, H., 1989: Hydrogen turnover by psychotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. — FEMS Microbiol. Ecol. 62: 285–294.
  • Cord-Ruwisch, R., 1987: Contribution à l'étude du métabolisme de H2 par les bactéries anaérobies. — Ph. D. thesis. L'Université de Provence Aix-Marseille I, Marseille, France.
  • Cord-Ruwisch, R. & Ollivier, B., 1986: Interspecies hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes. — Arch. Microbiol. 144: 163–165.
  • Cord-Ruwisch, R., Seitz, H. J. & Conrad, R., 1988: The capacity of hydrogenotrphic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. — Arch. Microbiol. 149: 350–357.
  • Daniels, L., Starling, R. & Sprott, G. D., 1984: The bioenergetics of methanogenesis. — Biochim. Biophys. Acta 768: 113–163.
  • Dietrich, G., Weiss, N. & Winter, J. 1988a: Acetothermus paucivorans, gen. nov., sp. nov., a strictly anaerobic, thermophilic bacterium from sewage sludge, fermenting hexoses to acetate, CO2 and H2. — System. Appl. Microbiol. 10: 174–179.
  • Dietrich, G., Weiss, N., Fiedler, F. & Winter, J., 1988b: Acetofilamentum rigidum gen. nov., sp. nov., a strictly anaerobic bacterium from sewage sludge. — System. Appl. Microbiol. 10: 273–278.
  • Dolfing, J., 1988: Acetogenesis. — In: Zehnder, A. J. B. (ed.): Biology of Anaerobic Microorganisms: 417–468. — Wiley, New York.
  • Dwyer, D. F., Weeg-Aerssens, E., Shelton, D. R. & Tiedje, J. M., 1988: Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. — Appl. Environ. Microbiol. 54: 1354–1359.
  • Fauque, G., Peck, H. D., Jr., Moura, J. J. G., Huynh, B. H., Berlier, Y., Der Vartanian, D. V., Teixeira, M, Przybyla, A. E., Lespinat, P. A., Moura, I. & LeGall, J., 1988: The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. — FEMS Microbiol. Rev. 54: 299–344.
  • Goodwin, S. & Zeikus, J. G., 1987: Ecophysiological adaptations of anaerobic bacteria to low pH. Analysis of anaerobic digestion in acidic bog sediments. — Appl. Environ. Microbiol. 53: 57–64.
  • Goodwin, S., Conrad, R. & Zeikus, J. G., 1988: Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems. — Appl. Environ. Microbiol. 54: 590–593.
  • Gottschalk, G. & Andreesen, J. R., 1979: Energy metabolism in anaerobes. — In: Quayle, J. R. (ed.) International Review of Biochemistry. Vol. 21, Microbial Biochemistry: 85–114. — University Park Press, Baltimore.
  • Gujier, W. & Zehnder, A. J. B., 1983: Conversion processes in anaerobic digestion.— Water Sci. Tech- nol. 15: 127–167.
  • Iversen, N., Oremland, R. S. & Klug, M. J., 1987: Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. — Limnol. Oceanogr. 32: 804–814.
  • Jones, J. G. & Simon, B. M., 1985: Interaction of acetogens and methanogens in anaerobic freshwater sediments. — Appl. Environ. Microbiol. 49: 944–948.
  • Krzycki, J. A., Morgan, J. B., Conrad, R. & Zeikus, Zeikus, J. G., 1987: Hydrogen metabolism during methanogenesis from acetate by Methanosarcina barkeri. — FEMS Microbiol. Lett. 40: 193–198.
  • Kuivila, K. M., Murray, J. W., Devol, A. H. & Novelli, P. C., 1989: Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. — Geochim. Cosmochim. Acta 53: 409–416.
  • Lee, M. J. & Zinder, S. H., 1988: Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture. — Appl. Environ. Microbiol. 54: 1457–1461.
  • Ljungdahl, L. G., 1986: The autotrophic pathway of acetate synthesis in acetogenic bacteria. — Ann. Rev. Microbiol. 40: 415–450.
  • Lovley, D. R. & Goodwin, S., 1988: Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. — Geochim. Cosmochim. Acta 52: 2993–3003.
  • Lovley, D. R. & Klug, M. J., 1983: Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. — Appl. Environ. Microbiol. 45: 1310–1315.
  • Lovley, D. R. & Klug, M. J., 1986: Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. — Geochim. Cosmochim. Acta 50: 11–18.
  • Lupton, F. S., Conrad, R. & Zeikus, J. G., 1984: Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. — J. Bad. 159: 843–849.
  • Mah, R. A., Ward, D. M., Baresi, L. & Glass, T. L., 1977: Biogenesis of methane. — Ann. Rev. Microbiol. 31: 309–341.
  • Michener, R. H., Scranton, M. I. & Novelli, P., 1988: Hydrogen (H2) distributions in Carmans River Estuary. — Estuar. Coast. Shelf Sci. 27: 223–235.
  • Novelli, P. C., Scranton, M. I. & Michener, R. H., 1987: Hydrogen distributions in marine sediments. — Limnol. Oceanogr. 32: 565–576.
  • Odum, J. M. & Peck, H. D. Jr., 1981: Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. — FEMS Microbiol. Lett. 12: 47–50.
  • Öztürk, S. S., Palsson, B. O. &. Thiele, J. H., 1989: Control of interspecies electron transfer flow during anaerobic digestion: Dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs. — Biotechnol. Bioeng. 33: 745–757.
  • Pankhania, I. P., Spormann, A. M., Hamilton, W. A. & Thauer, R. K., 1988: Lactate conversion to acetate, CO2 and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): Indications for the involvement of an energy driven reaction. — Arch. Microbiol. 150: 26–31.
  • Phelps, T. J. & Zeikus, J. G., 1984: Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. — Appl. Environ. Microbiol. 48: 1088–1095.
  • Phelps, T. J., Conrad, R. & Zeikus, J. G., 1985: Sulfate- dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate or methanol. — Appl. Environ. Microbiol. 50: 589–594.
  • Rudd, J. W. M. & Taylor, C. D., 1980: Methane cycling in aquatic environments. — Adv. Aquat. Microbiol. 2: 77–150.
  • Schink, B., 1988: Principles and limits of anaerobic degradation: Environmental and technological aspects. — In: Zehnder, A. J. B. (ed.): Biology of Anaerobic Microorganisms: 771–846. — Wiley, New York.
  • Schink, B., 1991: Syntrophism among prokaryotes. In: Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K. H. (eds.): The Prokaryotes, 2nd edition: 276–299. — Springer, New York.
  • Schink, B. & Thauer, R. K., 1988: Energetics of syntrophic methane formation and the influence of aggregation. — In: Lettinga, G., Zehnder, A. J. B., Grotenhuis, J. T. C. & Hulshoff Pol, L. W. (eds.): Granular Anaerobic Sludge; Microbiology and Technology: 5–17. — Pudoc, Wageningen.
  • Schüler, S., Thebrath, B. & Conrad, R., 1990: Seasonal changes in methane, hydrogen, and carbon monoxide concentrations in a large and a small lake. — In: Tilzer, M. J. & Serruya, C. (eds.): Large Lakes, Ecological Structure and Function: 503–510. — Springer, Berlin.
  • Schütz, H., Conrad, R., Goodwin, S. & Seiler, W., 1988: Emission of hydrogen from deep and shallow freshwater environments. — Biogeochem. 5: 295–311.
  • Scranton, M. I., Novelli, P. C. & Loud, P. A., 1984: The distribution and cycling of hydrogen gas in the waters of two anoxic marine environments. — Limnol. Oceanogr. 29: 993–1003.
  • Seitz, H. J., 1989: Umsetzung von Wasserstoff in Rein- und syntrophen Mischkulturen anaerober Bakterien. — Ph. D. thesis, Universität Konstanz, Konstanz, Germany.
  • Seitz, H. J., Schink, B. & Conrad, R., 1988: Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate. — FEMS Microbiol. Lett. 55: 119–124.
  • Seitz, H. J., Schink, B., Pfennig, N. & Conrad, R., 1990a: Energetics of syntrophic ethanol oxidation in defined chemostat cocultures. 1. Energy requirement during H2 production and H2 oxidation. — Arch. Microbiol. 155: 82–88.
  • Seitz, H. J., Schink, B., Pfennig, N. & Conrad, R., 1990 b: Energetics of syntrophic ethanol oxidation in defined chemostat cocultures. 2. Energy sharing in biomass production. — Arch. Microbiol. 155: 89–93.
  • Soutschek, E., Winter, J., Schindler, E & Kandler, O., 1984: Acetomicrobium flavidum, gen. nov., sp. nov., a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose. — System. Appl. Microbiol. 5: 377–390.
  • Terlesky, K. C. & Ferry, J. G., 1988: Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila — J. Biol. Chem. 263: 4075–4079.
  • Thauer, R. K., Jungermann, K. & Decker, K., 1977: Energy conservation in chemotrophic anaerobic bacteria. — Bacteriol. Rev. 41: 100–180.
  • Thebrath, B. & Conrad, R., 1992: Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. — FEMS Microbiol. Ecol. 86: 295–302.
  • Thiele, J. H. & Zeikus, J. G., 1988: Control of interspecies electron flow during anaerobic digestion: Significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in floes. — Appl. Environ. Microbiol. 54: 20–29.
  • Thompson, T. E., Conrad, R. & Zeikus, J. G., 1984: Regulation of carbon and electron flow in Propionispira arboris: Physiological function of hydrogenase and its role in homopropionate formation. — FEMS Microbiol. Lett. 22: 265–271.
  • Uffen, R. L., 1976: Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy source. — Proc. Nat. Acad. Sci. USA 73: 3298–3302.
  • Ward, D. M. & Winfrey, M. R., 1985: Interactions between methanogenic and sulfate-reducing bacteria in sediments. — Adv. Aquat. Microbiol. 3: 141–179.
  • Westermann, P., Ahring, B. K. & Mah, R. A., 1989: Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. — Appl. Environ. Microbiol. 55: 1262–1266.
  • Wolin, M. J., 1982: Hydrogen transfer in microbial communities. — In: Bull, A. T. & Slater, J. H. (eds.): Microbial Interactions and Communities, Vol. 1: 323–356. — Academic Press, London.
  • Wuhrmann, K., 1982: Ecology of methanogenic systems in nature. — Experientia 38: 193–198.
  • Zaiss, U, 1981: Seasonal studies of methanogenesis and desulfurication in sediments of the River Saar. — Zbl. Bakt. Hyg., I. Abt. Orig. C 2: 76–89.
  • Zehnder, A. J. B., 1978: Ecology of methane formation: — In: Mitchell, R. (ed.): Water Pollution Microbiology, Vol. 2: 349–376. — Wiley, New York.
  • Zeikus, J. G., 1983: Metabolic communication between biodegradative populations in nature. — In: Slater, J. H., Whittenbury, R. & Wimpenny, J. W. T. (eds.): Microbes in Their Natural Environments. 423–462. — Cambridge University Press, Cambridge.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.