Publication Cover
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Volume 25, 1996 - Issue 1
2
Views
0
CrossRef citations to date
0
Altmetric
II. General ecological processes

A comparison of hydrogen sulfide, hydrogen and methane production and consumption in different aquatic ecosystems

Pages 63-71 | Published online: 01 Dec 2017

References

  • Abram, J. N. & Nedwell, D. B., 1978: Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. — Arch. Microbiol. 117: 89–92.
  • Aragno, M. & Schlegel, H. G., 1981: The hydrogen- oxidizing bacteria. — In: Starr, M. P. (ed.): The Procaryotes, a Handbook on Habitats, Isolation and Identification of Bacteria. — Springer, Berlin.
  • Belyaev, S. S., Finkelstein, Z. I. & Ivanov, M. V., 1975: Intensity of bacterial methane formation in ooze deposits of certain lakes.Microbiology 44: 272–275.
  • Bossard, P. & Gächter, R., 1981: Methan- and Sauerstoffhaushalt im mesotrophen Lungernsee. — Schweiz, Z. Hydrol. 43: 219–252.
  • Bowien, B. & Schlegel, H. G., 1981: Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. — Annu. Rev. Microbiol. 35: 405–452.
  • Bryant, M. P., Campbell, L. L., Reddy, C. A. & Crabill, M. R., 1977: Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. — Appl. Environ. Microbiol. 33: 1162–1169.
  • Cappenberg, T. E., 1976: Methanogenesis in the bottom deposits of a small stratified lake. — In: Schlegel, H. G., Pfennig, N. & Gottschalk, G. (eds.): Microbial Production and Utilisation of Gases (H2, CH4, CO). E. Goltze, Göttingen.
  • Cappenberg, T. E. & Prins, R. A., 1974: Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. III. Experiments with 14C-labeled substrates. — Antonie van Leeuwenhoek 40: 457–469.
  • Christensen, D., 1984: Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments. — Limnol. Oceanogr. 29: 189–192.
  • Conrad, R. & Schütz, H., 1988: Methods of studying methanogenic bacteria and methanogenic activities in aquatic environments. — In: Austin, B. (ed.) Methods in Aquatic Bacteriology. J. Wiley and Sons, New York.
  • Conrad, R. & Seiler, W., 1979: The role of hydrogen bacteria during the decomposition of hydrogen by soil. — FEMS Microbiology Letters 6: 143–145.
  • Fjerdingstad, E., 1975: Bacteria and fungi. — In: Whitton, B. A. (ed.): River Ecology. — Blackwell Sci. Publ., Oxford.
  • Fjerdingstad, E., Fjerdingstad, E. & Popea, F., 1976: Analysis of heavy metals and bacteria in sediments from Danish lignite pits. — Arch. Hydrobiol. 77: 226–253.
  • Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. M., 1978: Methods for chemical analysis of fresh waters. — IBP Handbook 8. 2nd Ed., Blackwell Sci. Publ., Oxford.
  • Deutsche Einheitsverfahren (DEV) zur Wasser-, Abwasser- und Schlammuntersuchung. 1984. — 13th Ed., Verlag Chemie, Weinheim.
  • Heyer, J., Malashenko, Y., Berger, U. & Budkova, E., 1984: Verbreitung methanotropher Bakterien. — Z. Allgem. Mikrobiol. 24: 725–744.
  • Heyer, J. & Suckow, R., 1985: Ökologische Untersuchungen der Methanoxydation in einem sauren Moorsee. — Limnologia 16: 247–266.
  • Howarth, R. W. & Teal, J. M., 1979: Sulfate reduction in a New England salt marsh. — Limnol. Oceanogr. 24: 999–1013.
  • Ingvorsen, K. & Jorgensen, B. B., 1982: Seasonal variations in H2S emission to the atmosphere from intertidal sediments in Denmark. — Atmospheric Environ. 16: 855–865.
  • Ingvorsen, K., Zeikus, J. G. & Brock, T. D., 1981: Dynamics of bacterial sulfate reduction in a eutrophic lake. — Appl. Environ. Microbiol. 42: 1029–1036.
  • Jannasch, H. W, 1975: Methane oxidation in Lake Kivu. — Limnol. Oceanogr. 20: 860–864.
  • Jones, J. G., Simon, B. M. & Gardener, J., 1982: Factors affecting methanogenesis and associated anaerobic processes in the sediments of a stratified eutrophic lake. — J. Gen. Microbiol. 128: 1–11.
  • Jørgensen, B. B., 1980: Mineralization and the bacterial cycling of carbon, nitrogen and sulphur in marine sediments. — In: Ellwood, D. C., Hedger, J. N., Latham, M. J., Lynch, J. M. & Slater, J. H. (eds.): Contemporary Microbial Ecology. — Academic Press, London.
  • Kristjansson, J. K., Schönheit, P. & Thauer, R. K., 1982: Different K3 values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate. — Arch. Microbiol. 131: 278–282.
  • Laanbroek, H. J. & Veldkamp, H., 1982: Microbial interactions in sediment communities. — Phil. Trans. R. Soc. Lond. B 297: 533–550.
  • Mountfort, D. O. & Asher, R. A., 1981: Role of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediment of Waimea Inlet, Nelson, New Zealand. — Appl. Environ. Microbiol. 42: 252–258.
  • Niemelä, S. I. & Tuovinen, O. H., 1972: Acidophilic thiobacilli in the river Sirppujoki. — J. Gen. Microbiol. 73: 23–28.
  • Pfennig, N. & Widdel, F., 1981: Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. — In: Bothe, H. & Trebst, A. (eds.): Biology of Inorganic Nitrogen and Sulfur. — Springer, Berlin.
  • Ramm, A. E. & Bella, D. A., 1974: Sulfide production in anaerobic microcosms. — Limnol. Oceanogr. 19: 110–118.
  • Rheinheimer, G., 1981: Microbiologie der Gewässer. — 3rd edition. Fischer, Stuttgart.
  • Rudd, J. W. M. & Hamilton, R. D., 1978: Methane cycling in a eutrophic shield lake and its effect on whole lake metabolism. — Limnol. Oceanogr. 19: 519–524.
  • Schink, B. & Zeikus, J. G., 1984: Ecology of aerobic hydrogen oxidizing bacteria in two freshwater lake ecosystems. — Can. f. Microbiol. 30: 260–265.
  • Schneider, M., Zaiss, U. & Kaltwasser, H., 1981: Thiobazillen im Wasser und Sediment der Saar. — Zbl. Bakt. Hyg., I. Abt. Orig. C 2: 365–374.
  • Schönheit, P., Kristjansson, J. K. & Thauer, R. K., 1982: Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. — Arch. Microbiol. 132: 285–288.
  • Schweizer, C. & Aragno, M., 1975: Etude des hydrogenobacteries dans un petit lac. — Bull. Soc. Neuchatel. Sci. Nat. 98: 79–87.
  • Smith, P. H. & Mah, R. A., 1966: Kinetics of acetate metabolism during sludge digestion. — Appl. Microbiol. 14: 368–371.
  • Sorensen, J., Christensen, D. & Jørgensen, B. B., 1981: Volatile fatty acids and hydrogen as substrates for sulfate reducing bacteria in anaerobic marine sediment. — Appl. Environ. Microbiol. 42: 5–11.
  • Winfrey, M. R. & Zeikus, J. G., 1977: Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. — Appl. Environ. Microbiol. 33: 275–281.
  • Winfrey, M. R. & Zeikus, J. G., 1979: Anaerobic metabolism of immediate methane precursors in Lake Mendota. — Appl. Environ. Microbiol. 37: 244–253.
  • Winfrey, M. R. & Ward, M. D., 1983: Substrates for sulfate reduction and methane production in intertidal sediments.Appl. Environ. Microbiol. 45: 193–199.
  • Zaiss, U., 1981 a: Natural ebullition of mine gas and its microbial oxidation in the Netzbach brook, Saarland. — Verb. Internat. Verein. Limnol. 21: 1381–1385.
  • Zaiss, U., 1981b: The sediments of the new artificial Lake Bostalsee (Saarland, Germany) with particular reference to microbial activity. — Arch. Hydrobiol. 92: 346–358.
  • Zaiss, U., 1981 c: Seasonal studies of methanogenesis and desulfurication in sediments of the River Saar. — Zbl. Bakt. Hyg., I. Abt. Orig. C 2: 76–89.
  • Zaiss, U., 1982: Coliphagen and coliforme Bakterien in Fließgewässern unterschiedlicher Güte. — Z. Wasser Abwasser Forsch. 15: 171–177.
  • Zaiss, U., 1983: Zur Ökologie Schwefel-, methan- und wasserstoffoxidierender Bakterien in der Saar. — Verh. Ges. Ökol. 10: 403–411.
  • Zaiss, U., 1984: Acetate, a key intermediate in the metabolism of anaerobic sediments containing sulfate. — Arch. Hydrobiol. Beih. Ergebn. Limnol. 19: 215–221.
  • Zaiss, U., 1985: Schwefelwasserstoff- und Methanproduktion in den Watten vor Hooksiel (Innenjade). — Verh. Ges. Ökol. 13: 55–64.
  • Zaiss, U. & Kaltwasser, H., 1979 a: Über den Einfluß wasserbaulicher Maßnahmen auf die mikrobiologische Gasproduktion in Fließgewässersedimenten. — Arch. Hydrobiol. 87: 314–326.
  • Zaiss, U. & Kaltwasser, H., 1979 b: Hydrogenase activity and methanogenesis in anaerobic sewage sludge, in rumen liquid, and in freshwater sediments. — Europ. J. Appl. Microbiol. Biotechnol. 8: 217–227.
  • Zaiss, U. & Kaltwasser, H., 1979 c: Der Einfluß wasserbaulicher Maßnahmen auf die Desulfurikation im Fließgewässer. — Verh. Ges. Ökologie 7: 343–350.
  • Zaiss, U., Blass, M. & Kaltwasser, H., 1979: Produktion und Verbrauch von Methan und Wasserstoff durch Mikroorganismen in der Saar. — Dtsch. Gewässerkdl. Mitt. 23: 1–6.
  • Zaiss, U., Winter, P. & Kaltwasser, H., 1982: Microbial methane oxidation in the river Saar. Z. Allgem. Mikrobiol. 22: 139–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.