Publication Cover
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Volume 25, 1996 - Issue 1
0
Views
0
CrossRef citations to date
0
Altmetric
II. General ecological processes

The role of sulfate-reducing and methane-producing bacteria in the metabolism of hydrogen and short-chained fatty acids in a freshwater swamp

Pages 73-81 | Published online: 01 Dec 2017

References

  • Abram, J. W. & Nedwell, D. B., 1978: Inhibition of methanogenesis by sulfate reducing bacteria competing for transferred hydrogen. — Arch. Microbiol. 117: 89–92.
  • Ahring, B. K. & Westermann, P., 1984: Isolation and characterization of a thermophilic, acetate-utilizing methanogenic bacterium. — FEMS Microbiol. Lett. 25: 47–52.
  • Ahring, B. K. & Westermann, P., 1985: Sensitivity of thermophilic methanogenic bacteria to heavy metals. — Curr. Microbiol. 12: 273–276.
  • Baker-Blocker, A., Donahue, T. M. & Mancy, K. H., 1977: Methane flux from wetland areas. — Tellus 29: 245–250.
  • Banat, I. M., Lindström, E. B., Nedwell, D. B. & Balba, M. T., 1981: Evidence for coexistence of two distinct functional groups of sulfate reducing bacteria in salt marsh sediment. — Appl. Environ. Microbiol. 42: 985–992.
  • Brown, K. A., 1985: Sulphur distribution and metabolism in waterlogged peat. — Soil Biol. Biochem. 17: 39–45.
  • Cappenberg, T. E., 1974: Interrelations between sulfate reducing and methane producing bacteria in bottom deposits of a freshwater lake. II. Inhibition experiments. — Antonie van Leeuwenhoek J. Microbiol. Serol. 40: 297–306.
  • Cappenberg, T. E. & Prins, H., 1974: Interrelations between sulfate reducing and methane producing bacteria in bottom deposits of a fresh water lake. III. Experiments with 14C-labelled substrates. — Antonie van Leewenhoek J. Microbiol. Serol. 40: 457–469.
  • Goodwin, S. & Zeikus, J. G., 1987: Ecophysiological adaptations of anaerobic bacteria to low pH: Analysis of anaerobic digestion in acid bog sediments. — Appl. Environ. Microbiol. 53: 57–64.
  • Jones, J. G., Simon, B. M. & Gardener, S., 1982: Factors affecting methanogenesis and associated anaerobic processes in the sediments of a stratified eutrophic lake. — J. Gen. Microbiol. 128: 1–11.
  • King, G., 1984: Metabolism of trimethylamine, choline and glycine betaine by sulfate reducing bacteria and methanogenic bacteria in marine sediments. — Appl. Environ. Microbiol. 48: 719–725.
  • King, G. M. & Wiebe, W. J., 1980: Tracer analysis of methanogenesis in salt marsh soils. — Appl. Environ. Microbiol. 39: 877–881.
  • Kjøller, A. & Struwe, S., 1980: Microfungi of decomposing red alder leaves and their substrate utilization. — Soil Biol. Biochem. 12: 425–431.
  • Lovley, D. R., Dwyer, D. F. & Klug, M. J., 1982: Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. — Appl. Environ. Microbiol. 43: 1373–1379.
  • Lovley, D. R. & Klug, M. J., 1983: Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. — Appl. Environ. Microbiol 45: 187–192.
  • Mountfort, D. O., Asher, R. A., Mays, E. L. & Tiedje, J. M., 1980: Carbon and electron flow in mud and sandflat intertidal sediments at Delaware Inlet, Nelson, New Zealand. — Appl. Environ. Microbiol. 39: 686–694.
  • Schönheit, P., Kristjansson, J. K. & Thauer, R. K., 1982: Kinetic mechanism for the ability of sulfate reducers to outcompete methanogens for acetate. — Arch. Microbiol. 132: 285–288.
  • Senior, E., Lindström, E. B., Banat, I. M. & Ned-well, D. B., 1982: Sulfate reduction and methanogenesis in the sediment of a salt marsh on the east coast of the United Kingdom. — Appl. Environ. Microbiol. 43: 987–996.
  • Smith, R. L. & Klug, M. J., 1981: Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments. — Appl. Environ. Microbiol. 42: 116–121.
  • Sørensen, J., Christensen, D. & Jorgensen, B. B., 1981: Volatile fatty acids as substrates for sulfate reducing bacteria in anaerobic marine sediment. — Appl. Environ. Microbiol. 42: 5–11.
  • Taylor, B. F. & Oremland, R. S., 1979: Depletion of adenosine triphosphate in Desulfovibrio by oxyanions of group VI elements. — Curr. Microbiol. 3: 101–103.
  • Westermann, P. & Ahring, B. K., 1985: Terminal anaerobic carbon mineralization in a permanently waterlogged alder swamp. — In: Jensen, V., Kjøller, A. & Sørensen, L. H. (eds.): Microbial Communities in Soil. — Elsevier Press, Holland.
  • Westermann, P. & Ahring, B. K., 1986: Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp. — Appl. Environ. Microbiol. 53: 2554–2559.
  • Wieder, R. K. & Lang, G. E., 1988: Cycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia.Biogeochemistry 5: 221–242.
  • Williams, R. T. & Crawford, R. L., 1983: Microbial diversity of Minnesota peatlands. — Microb. Ecol. 9: 201–214.
  • Williams, R. T. & Crawford, R. L., 1984: Methane production in Minnesota peat-lands. — Appl. Environ. Microbiol. 47: 1266–1271.
  • Winfrey, M. R. & Ward, D. M., 1983: Substrates for sulfate reduction and methane production in intertidal sediments. — Appl. Environ. Microbiol. 45: 193–199.
  • Winfrey, M. R. & Zeikus, J. G., 1977: Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. — Appl. Environ. Microbiol. 33: 275–281.
  • Winfrey, M. R. & Zeikus, J. G., 1979: Anaerobic metabolism of immediate methane precursors in Lake Mendota. — Appl. Environ. Microbiol. 37: 244–253.
  • Zehnder, A. J. B., Huser, B. & Brock, T. D., 1979: Measuring radioactive methane with the liquid scintillation counter. — Appl. Environ. Microbiol. 37: 897–899.
  • Zinder, S. H., Cardwell, S. C, Anguish, T., Lee, M. & Koch, M., 1984: Methanogenesis in a thermophilic (58°) anaerobic digestor: Methanotrix sp. as an important aceticlastic methanogen. — Appl. Environ. Microbiol. 47: 796–807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.