Publication Cover
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen
Volume 25, 1996 - Issue 1
2
Views
4
CrossRef citations to date
0
Altmetric
IV. Sulfur gases

Microbial cycling of organosulfur gases in marine and freshwater environments

Pages 137-151 | Published online: 01 Dec 2017

References

  • Al-Amoudi, O. A. & Ali, A. Y., 1989: Some practical aspects of measurements of betaines and their sulphur analogues by the use of HPLC. — J. Microbiol. Methods 10: 289–296.
  • Andreae, M. O., 1980: Dimethylsulfoxide in marine and freshwaters. — Limnol. Oceanogr. 25: 1054–1063.
  • Andreae, M. O., 1985 a: The emission of sulfur to the remote atmosphere. Background paper. — In: Galoway, J., Charlson, R., Andreae, M. & Rodhe, H. (eds): The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere. — D. Reidel Publishing Co., Boston, MA., 5–25.
  • Andreae, M. O., 1985 b: Dimethvlsulfide in the water column and the sediment porewaters of the Peru upwelling area. — Limnol. Oceanogr. 30: 1208–1218.
  • Andreae, M. O., 1986: The ocean as a source of atmospheric sulfur compounds. — In: Buat-Menard, P. (ed.): The Role of Air-Sea Exchange in Geochemical Cycling. — D. Reidel Publishing Co., Boston, MA., 331–362.
  • Andreae, M. O., 1990: Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. — Mar. Chem. 30: 1–29.
  • Andreae, M. O. & Barnard, W. R., 1984: The marine chemistry of dimethvlsulfide. — Mar. Chem. 14: 267–279.
  • Andreae, M. O. & Raemdonck, H., 1983: Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view. — Science 221: 744–747.
  • Banwart, W. L. & Bremner, J. M., 1975: Formation of volatile sulfur compounds by microbial decomposition of sulfur-containing amino acids. — Soil Biol. Biochem. 7: 359–364.
  • Barnard, W. R., Andreae, M. O. & Iverson, R. L., 1984: Dimethvlsulfide and Phaeocystis panchetti in the southeastern Bering Sea. — Continental Shelf Res. 3: 103–113.
  • Bates, T. S. & Cline, J. D., 1985: The role of the ocean in a regional sulfur cycle. — J. Geophys. Res. 90: 9168–9172.
  • Bechard, M. J. & Rayburn, W. R., 1979: Volatile organic sulfides from freshwater algae. — J. Phycol. 15: 379–383.
  • Bilous, P. T. & Vc'einer, J. H., 1985: Dimethyl sulfoxide reductase activity bv anaerobically grown Escherichia coti HB101. — J. Bacteriol. 162: 1151–1155.
  • Bremner, J. M. & Bundy, L. G., 1974: Inhibition of nitrification in soils by volatile sulfur compounds. — Soil Biol. Biochem. 6: 161–165.
  • Bremner, J. M. & Steele, C. G., 1978: Role of microorganisms in the atmospheric sulfur cycle. — Adv. Microb. Ecol. 2: 155–201.
  • Brimblecombe, P. & Shooter, D., 1986: Photo-oxidation of dimethvlsulphide in aqueous solution. — Mar. Chem. 19: 343–353.
  • Brown, K. A. & Bell, J. N. B., 1986: Vegetation — the missing sink in the global cycle of carbonyl sulfide (COS). — Atmos. Environ. 20: 537–540.
  • Caron, F. & Kramer, J. R., 1989: Gas chromatographic determination of volatile sulfides at trace levels in natural freshwaters. — Anal. Chem. 61: 114–118.
  • Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G., 1987: Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate.Nature 326: 655–661.
  • Crutzen, J. P., 1976: The possible importance of CSO for the sulfate layer of the stratosphere. — Geophys. Res. Utt. 3: 73–75.
  • Dacey, J. W. H. & Blough, N., 1987: Hydroxide decomposition of DMSP to form DMS. — Geophys. Res. Lett. 14: 1246–1249.
  • Dacey, J. W. H. & Wakeham, S. G., 1986: Oceanic dimethvlsulfide: Production during zooplankton grazing on phvtoplankton. — Science 233: 1314–1316.
  • Debont, J. A. M., Van Dijken, J. P. & Harder, W, 1981: Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth ofHyphomicrobium S. — J. Gen. Microbiol. 127: 315–323.
  • Drotar, A., Burton, G. A., Taverier, J. E. & Fall, R., 1987 a: Widespread occurrence of bacterial thiol methvltransferase and the biogenic emission of methylated sulfur gases. — Appl. Environ. Microbiol. 53: 1626–1631.
  • Drotar, A., Fall, L. R., Mishalanie, E. A., Taverier, J. E. & Fall, R., 1987 b: Enzymatic methvlation of sulfide, selenide and organic thiols by Tetrahymena thermophila. — Appl. Environ. Microbiol. 53: 2111–2118.
  • Ferek, R. J. & Andreae, M. O., 1983: The supersaturation of carbonyl sulfide in surface waters of the Pacific Ocean. — Geophys. Res. Lett. 10: 393–396.
  • Ferek, R. & Andreae, M. O., 1984: Photochemical production of carbonyl sulfide in marine surface waters.Nature 307: 148–150.
  • Franzman, P. D., Deprez, P. P., Burton, H. R. & Van Den Hoff, J., 1987: Limnology of Organic Lake, Antarctica, a meromictic lake that contains high concentrations of dimethyl sulfide. — Aust. J. Mar. Freshw. Res. 38: 409–417.
  • Froelich, P. N., Kaul., L. W., Byrd, J. T., Andreae, M. O. & Roe, K. K., 1985: Arsenic, barium, germanium, tin, dimethvlsulfide and nutrient biogeochemistry in Charlotte Harbor, Florida, a phosphorus-enriched estuary. — Est. Coast. Shelf Sci. 20: 239–264.
  • Gibson, J. A. E., Garrick, R. C., Burton, H. R. & Mctaggart, A. R., 1990: Dimethvlsulfide and the alga Phaeocystis pouchetii in Antarctic coastal waters. — Mar. Biol. 104: 339–346.
  • Goldan, P. D., Kuster, W. C., Albritton, D. L. & Fehsenfeld, F. C., 1987: The measurement of natural sulfur emissions from soils and vegetation: Three sites in the eastern United States revisited. — J. Atmos. Chem. 5: 439–467.
  • Haas, P., 1935: CLVII. The liberation of methyl sulphide by seaweed. — Biochem. f. 29: 1297–1298.
  • Hatakeyama, S., Izumi, K. & Akimoto, H., 1985: Yield of SOj and formation of aerosol in the photo-oxidation of DMS under atmospheric conditions. — Atmos. Environ. 19: 135–141.
  • Hoi.Dway, D. A. & Nriagu, J. O., 1988: A purge and trap gas chromatographic method for dimethyl sulfide in freshwater. — f. Environ. Anal. Chem. 32: 177–186.
  • Holligan, P. M., Turner, S. M. Liss, P. S., 1987: Measurements of dimethyl sulphide in frontal regions. — Continental Shelf Research 7: 213–224.
  • Howes, B. L., Dacey, J. W. H. & Wakeham, S. G., 1985: Effects of sampling technique on measurements of porewater constituents in salt marsh sediments. — Limnol. Oceanogr. 30: 221–227.
  • Ishida, Y., 1968: Physiological studies on evolution of dimethvlsulfide. — Memoirs Coll. Agrie. Kyoto Univ. 94: 47–82.
  • Kadota, H. & Ishida, Y., 1972: Production of volatile sulfur compounds by microorganisms. — Ann. Rev. Microbiol. 26: 127–138.
  • Kanagawa, T. & Kelly, D. P., 1986: Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus — FEMS Microbiol. Lett. 34: 13–19.
  • Keller, M. D., Bellows, W. K. & Guillard, R. R. L., 1989: Dimethvlsulfide production in marine phytoplankton. — In: Saltzman, E. S. & Cooper, W. J. (eds.): Biogenic Sulfur in the Environment. — American Chemical Society (Symposium Series 393), Washington, DC., 167–182.
  • Kelly, D. P., 1988: Oxidation of sulfur compounds. — In: Cole, J. & Ferguson, S. (eds.): The Nitrogen and Sulfur Cycles. — Society for General Microbiology Symposium 42, Cambridge University Press, Cambridge, U.K., 65–98.
  • Kelly, D. P. & Smith, N. A., 1990: Organic sulfur compounds in the environment: Biogeochemistry, microbiology, and ecological aspects. — Adv. Microb. Ecol. 11: 345–385.
  • Kiene, R. P., 1988: Dimethyl sulfide metabolism in salt marsh sediments. — FEMS Microbiol. Ecol. 53: 71–78.
  • Kiene, R. P., 1990: Dimethyl sulfide production from dimethvl- sulfoniopropionate in coastal seawater samples and bacterial cultures. — Appl. Environ. Microbiol. 56: 3292–3297.
  • Kiene, R. P., 1991: Evidence for the microbial turnover of thiols in anoxic coastal marine sediments.-Biogeochemistry 13: 117–135.
  • Kiene, R. P. & Bates, T. S., 1990: Biological removal of dimethyl sulphide from sea water. — Nature 345: 702–705.
  • Kiene, R. P. & Capone, D. G., 1988: Microbial transformations of methylated sulfur compounds in anoxic salt marsh sediments. — Microbial Ecol. 15: 275–291.
  • Kiene, R. P. & Service, S. K., 1991: Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration. — Mar. Ecol. Prog. Ser. 76: 1–11.
  • Kiene, R. P. & Taylor, B. F., 1988a: Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. — Appl. Environ. Microbiol. 54: 2208–2212.
  • Kiene, R. P. & Taylor, B. F., 1988 b: Biotransformations of organosulphur compounds in sediments via 3-mercaptopropionate. — Nature 332: 148–150.
  • Kiene, R. P. & Visscher, P. T., 1987: Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in salt marsh sediments. — Appl. Environ. Microbiol. 53: 2426–2434.
  • Kiene, R. P., Oremland, R. S., Catena, A., Miller, L. G. & Capone, D. G., 1986: Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. — Appl. Environ. Microbiol. 52: 1037–1045.
  • Kiene, R. P., Malloy, K. D. & Taylor, B. F., 1990: Sulfur-containing amino acids as sources of thiols in anoxic coastal marine sediments. — Appl. Environ. Microbiol. 56: 156–161.
  • Kim, K. & Andreae, M. O., 1987: Carbon disulfide in seawater and in the marine atmosphere over the north Atlantic. — J. Geophys. Res. 92: 14733–14738.
  • Lee, C. & Wakeham, S. G., 1988: Organic matter in seawater: biogeochemical processes. — In: RILEY, J. P. (ed.): Chemical Oceanography Vol. 9, Academic Press Ltd. London, UK., 1–51.
  • Lovelock, J. E., 1974: CS2 and the natural sulphur cycle. — Nature 248: 625–626.
  • Lovelock, J. E., Maggs, R. J. & Rasmussen, R. A., 1972: Atmospheric dimethyl sulfide and the natural sulfur cycle. — Nature 237: 452–453.
  • Mopper, K. & Taylor, B. F., 1986: Biogeochemical cycling of sulfur. — In: Sohn, M. (ed.): Organic Marine Geochemistry: ACS Symposium Series. — American Chemical Society, Washington, D.C., 324–339.
  • Morrison, M. C. & Hines, M. E., 1990: The variability of biogenic sulfur flux from a temperate salt marsh on short time and space scales. — Atmos. Environ. 24: 1771–1779.
  • Nicolai, E. & Preston, R. D., 1953: Variability in the X-ray diagram of the cell walls of the marine alga Spongomorpha. — Nature 171.
  • Nriagu, J. O. & Holdway, D. A., 1989: Production and release of dimethyl sulfide from the Great Lakes. — Tellus 41B: 161–169.
  • Nriagu, J. O., Holdway, D. A. & Coker, R. D., 1987: Biogenic sulfur and the acidity of rainfall in remote areas of Canada. — Science 237: 1189–1192.
  • Oremland, R. S., Kiene, R. P., Mathrani, I., Whiticar, M. J. & Boone, D. R., 1989: Description of an estuarine methvlotrophic methanogen which grows on dimethyl sulfide. — Appl. Environ. Microbiol. 55: 994–1002.
  • Panter, R. & Penzhorn, R. D., 1980: Alkyl sulfonic acids in the atmosphere. — Atmos. Environ. 14: 149–151.
  • Powlson, D. S. & Jenkinson, D. S., 1971: Inhibition of nitrification in soil by carbon disulfide from rubber bungs. — Soil Biol. Biochem. 3: 267–269.
  • Rasmussen, R. H., 1974: Emission of biogenic hydrogen sulfide. — Tellus 24: 254–260.
  • Reed, R. H., 1983: Measurement and osmotic significance of β-dimethylsulfoniopropionate in marine macroalgae. — Mar. Biol. Lett. 4: 173–181.
  • Rodhe, H. & Isaksen, I., 1980: Global distribution of sulfur compounds in the troposphere estimated in a height/latitude transport models. — J. Geophys. Res. 85: 7401–7409.
  • Ruiz-Herrera, J. & Starkey, R. L., 1969: Dissimilation of methionine by fungi. — J. Bacterial. 99: 544–551.
  • Salsbury, R. L. & Merricks, D. L., 1975: Production of methanethiol and dimethyl sulfide by rumen microorganisms. — Plant and Soil 43: 191–209.
  • Segal, W. & Starkey, R. L., 1969: Microbial decomposition of methionine and identity of the resulting sulfur products. — J. Bacterial. 98: 908–913.
  • Shaw, G. E., 1983: Bio-controlled thermostasis involving the sulfur cycle. — Climatic Change 5: 297–303.
  • Sivela, S. & Sundman, V., 1975: Demonstration of Thiobacillus-type bacteria, which utilize methyl sulfides. — Arch. Microbiol. 103: 303–304.
  • Smith, N. A. & Kelly, D. P., 1988 a: Isolation and physiological characterization of autotrophic sul- phur bacteria oxidizing dimethyl disulphide as sole source of energy./Gen. Microbiol. 134: 1407–1417.
  • Smith, N. A. & Kelly, D. P., 1988 b: Mechanism of oxidation of dimethyl disulphide by Tbiobacillus thioparus strain E6. — J. Gen. Microbiol. 134: 3031–3039.
  • Smith, N. A. & Kelly, D. P., 1988 c: Oxidation of carbon disulfide as the sole source of energy for the autotrophic growth of Tbiobacillus thioparus strain TK-m. — J. Gen. Microbiol. 134: 3041–3048.
  • Soda, K., Tanaka, H. & Esaki, N., 1983: Multifunctional biocatalysis: Methionine gamma lyase. — Trends Biochem. Sci. (June): 214–217.
  • Sorensen, J., 1988: Dimethylsulfide and methane thiol in sediment porewater of a Danish estuary. — Biogeochemistry 6: 201–210.
  • Steudler, P. A. & Peterson, B. J., 1984: Contribution of gaseous sulfur from salt marshes to the global sulfur cycle. — Nature 311: 455–456.
  • Suylen, G. M. H. & Kuenen, J. G., 1986: Chemostat enrichment and isolation of Hyphomicrobium EG, a dimethyl sulphide oxidizing methylotroph and reevaluation of Thibacillus MSI. — Antonie van Leeuwenhoek 52: 281–293.
  • Suylen, G. M. H., Large, P. J., Van Dijken, J. P. & Kuenen, J. G., 1987: Methyl mercaptan oxidase, a key enzyme in the metabolism of methylated sulfur compounds by Hyphomicrobium EG. — J. Gen. Microbiol. 133: 2989–2997.
  • Suylen, G. M. H., Stefess, G. C. & Kuenen, J. G., 1986: Chemolithotrophic potential of a Hyphomicrobium species, capable of growth on methylated sulphur compounds. — Arch. Microbiol. 146: 192–198.
  • Taylor, B. F. & Kiene, R. P., 1989: Microbial metabolism of dimethyl sulfide. — In: Saltzman, E., & Cooper, W. (eds.) Biogenic Sulfur in the Environment. — American Chemical Society, Washington, DC., 202–221.
  • Turco, R. P., Whitten, R. C, Toon, O. B., Pollack, J. B. & Hamill, P., 1980: OCS, stratospheric aerosols and climate. — Nature 283: 283–286.
  • Turner, S. M., Malin, G. & Liss, P. S., 1988: The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in nearshore waters. — Limnol. Oceanogr. 33: 364–375.
  • Vairavamurthy, A., Andreae, M. O. & Iverson, R. L., 1985: Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. — Limnol. Oceanogr. 30: 59–70.
  • Wakeham, S. G., Howes, B. L. & Dacey, J. W. H., 1984: Dimethyl sulfide in a stratified coastal salt pond. — Nature 310: 770–772.
  • Wakeham, S. G., Howes, B. L., Dacey, J. W. H., Schwarzenbach, R. P. & Zeyer, J., 1987: Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond. — Geochim. Cosmochim. Acta 51: 1675–1684.
  • Zhang, L., Kuniyoshi, I., Hirai, M. & Shoda, M., 1991: Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMSP-11 isolated from a peat biofilter. — Biotechnol. Lett. 13: 223–228.
  • Zeyer, J., Eicher, P., Wakeham, S. G. & Schwarzenbach, R. P., 1987: Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria. — Appl. Environ. Microbiol. 53: 2026 — 2032.
  • Zinder, S. H. & Brock, T. D., 1978a: Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. — Appl. Environ. Microbiol. 35: 344–352.
  • Zinder, S. H. & Brock, T. D., 1978 b: Dimethyl sulfoxide as an electron acceptor for anaerobic growth. — Arch. Microbiol. 116: 35–40.
  • Zinder, S. H. & Brock, T. D., 1978 c: Dimethyl sulfoxide reduction by microorganisms. — J. Gen. Microbiol. 105: 335–342.
  • Zinder, S. H. & Brock, T. D., 1978d: Production of methane and carbon dioxide from methane thiol and dimethyl sulfide by anaerobic lake sediments. — Nature 273: 226–228.
  • Zinder, S. H., Doemel, W. N. & Brock, T. D., 1977: Production of volatile sulfur compounds during the decomposition of algal mats. — Appl. Environ. Microbiol. 34: 859–860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.