306
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Exploration of Displacement Reaction/Sorption Strategies in Spectrometric Analysis

, &
Pages 629-653 | Published online: 09 May 2013

References

  • Summers, J.S., Shimko, J., Freedman, F.L., Badger, C.T., and Sturgess, M. (2002) Displacement of Mn2+ from RNA by K+, Mg2+, neomycin B, and an arginine-rich peptide: Indirect detection of nucleic acid/ligand interactions using phosphorus relaxation enhancement. J. Am. Chem. Soc., 124 (50): 14934–14939.
  • Li, T., Wang, E.K., and Dong, S.J. (2009) Potassium–lead-switched G-quadruplexes: A new class of DNA logic gates. J. Am. Chem. Soc., 131 (42): 15082–15803.
  • Vessman, J., Stefan, R.I., Van Staden, J.F., Danzer, K., Lindner, W., Burns, D.T., Fajgelj, A., and Müller, H. (2001) Selectivity in analytical chemistry (IUPAC Recommendations 2001). Pure Appl. Chem., 73 (8): 1381–1386.
  • Das, J., Cederquist, K.B., Zaragoza, A.A., Lee, P.E., Sargent, E.H., and Kelley, S.O. (2012) An ultrasensitive universal detector based on neutralizer displacement. Nat. Chem., 4 (8): 642–648.
  • Wu, P., Li, C.H., Chen, J.B., Zheng, C.B., and Hou, X.D. (2012) Determination of cadmium in biological samples: An update from 2006 to 2011. Appl. Spectrosc. Rev., 47 (5): 327–370.
  • Anthemidis, A.N. and Miro, M. (2009) Recent developments in flow injection/sequential injection liquid–liquid extraction for atomic spectrometric determination of metals and metalloids. Appl. Spectrosc. Rev., 44 (2): 140–167.
  • Wu, P., Chen, H., Cheng, G.L., and Hou, X.D. (2009) Exploring surface chemistry of nano-TiO(2) for automated speciation analysis of Cr(III) and Cr(VI) in drinking water using flow injection and ET-AAS detection. J. Anal. At. Spectrom., 24 (8): 1098–1104.
  • Ojeda, C.B. and Rojas, F.S. (2012) Separation and preconcentration by cloud point extraction procedures for determination of ions: Recent trends and applications. Microchim. Acta, 177 (1–2): 1–21.
  • Zgoła-Grześkowiak, A. and Grześkowiak, T. (2011) Dispersive liquid–liquid microextraction. Trends Anal. Chem., 30 (9): 1382–1399.
  • Tan, Z.Q., Liu, J.F., and Pang, L. (2012) Advances in analytical chemistry using the unique properties of ionic liquids. Trends Anal. Chem., 39 218–227.
  • Han, X. and Armstrong, D.W. (2007) Ionic liquids in separations. Acc. Chem. Res., 40 (11): 1079–1086.
  • Gao, Y., Shi, Z.M., Long, Z., Wu, P., Zheng, C.B., and Hou, X.D. (2012) Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem. J., 103: 1–14.
  • Chen, H.W., Xu, S.K., and Fang, Z.L. (1994) Determination of copper in water and rice samples by flame atomic absorption spectrometry with flow-injection on-line adsorption preconcentration using a knotted reactor. Anal. Chim. Acta, 298 (2): 167–173.
  • Yan, X.P., Li, Y., and Jiang, Y. (2002) A flow injection on-line displacement/sorption preconcentration and separation technique coupled with flame atomic absorption spectrometry for the determination of trace copper in complicated matrices. J. Anal. At. Spectrom., 17 (6): 610–615.
  • Li, Y., Jiang, Y., Yan, X.P., and Ni, Z.M. (2002) Determination of trace mercury in environmental and foods samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry. Environ. Sci. Technol., 36 (22): 4886–4891.
  • Bode, H. (1954) Systematic investigation of the use of diethyldithiocarbamate in analysis. Z. Anal. Chem., 142 (6): 414–423.
  • Dong, L.M., Yan, X.P., Li, Y., Jiang, Y., Wang, S.W., and Jiang, D.Q. (2004) On-line coupling of flow injection displacement sorption preconcentration to high-performance liquid chromatography for speciation analysis of mercury in seafood. J. Chromatogr. A, 1036 (2): 119–125.
  • Fang, J., Jiang, Y., Yan, X.P., and Ni, Z.M. (2005) Selective quantification of trace palladium in road dusts and roadside soils by displacement solid-phase extraction online coupled with electrothermal atomic absorption spectrometry. Environ. Sci. Technol., 39 (1): 288–292.
  • Fang, J., Liu, L.W., and Yan, X.P. (2006) Minimization of mass interferences in quadrupole inductively coupled plasma mass spectrometric (ICP-MS) determination of palladium using a flow injection on-line displacement solid-phase extraction protocol. Spectrochim. Acta, Part B, 61 (7): 864–869.
  • Yan, X.P., Li, Y., and Jiang, Y. (2003) Selective measurement of ultratrace methylmercury in fish by flow injection on-line microcolumn displacement sorption preconcentration and separation coupled with electrothermal atomic absorption spectrometry. Anal. Chem., 75 (10): 2251–2255.
  • Wu, P., Gao, Y., Cheng, G.L., Yang, W.S., Lv, Y., and Hou, X.D. (2008) Selective determination of trace amounts of silver in complicated matrices by displacement–cloud point extraction coupled with thermospray flame furnace atomic absorption spectrometry. J. Anal. At. Spectrom., 23 (5): 752–757.
  • Gao, Y., Wu, P., Li, W., Xuan, Y.L., and Hou, X.D. (2010) Simultaneous and selective preconcentration of trace Cu and Ag by one-step displacement cloud point extraction for FAAS determination. Talanta, 81 (1–2): 586–590.
  • Li, Y., Huang, Y.F., Jiang, Y., Tian, B.L., Han, F., and Yan, X.P. (2011) Displacement solid-phase extraction on mercapto-functionalized magnetite microspheres for inductively coupled plasma mass spectrometric determination of trace noble metals. Anal. Chim. Acta, 692 (1–2): 42–49.
  • Nguyen, B.T. and Anslyn, E.V. (2006) Indicator-displacement assays. Coord. Chem. Rev., 250 (23–24): 3118–3127.
  • Fabbrizzi, L., Marcotte, N., Stomeo, F., and Taglietti, A. (2002) Pyrophosphate detection in water by fluorescence competition assays: Inducing selectivity through the choice of the indicator. Angew. Chem. Int. Ed., 41 (20): 3811–3814.
  • Lou, X.D., Ou, D.X., Li, Q.Q., and Li, Z. (2012) An indirect approach for anion detection: The displacement strategy and its application. Chem. Commun., 48 (68): 8462–8477.
  • Ghosh, K. and Sarkar, A.R. (2011) Pyridinium-based symmetrical diamides as chemosensors in visual sensing of citrate through indicator displacement assay (IDA) and gel formation. Org. Biomol. Chem., 9 (19): 6551–6558.
  • Schiller, A., Wessling, R.A., and Singaram, B. (2007) A fluorescent sensor array for saccharides based on boronic acid appended bipyridinium salts. Angew. Chem. Int. Ed., 46 (34): 6457–6459.
  • Janowski, V. and Severin, K. (2011) Carbohydrate sensing with a metal-based indicator displacement assay. Chem. Commun., 47 (30): 8521–8523.
  • Tan, J., Wang, H.F., and Yan, X.P. (2009) Discrimination of saccharides with a fluorescent molecular imprinting sensor array based on phenylboronic acid functionalized mesoporous silica. Anal. Chem., 81 (13): 5273–5280.
  • Sun, S.K., Tu, K.X., and Yan, X.P. (2012) An indicator-displacement assay for naked-eye detection and quantification of histidine in human urine. Analyst, 137 (9): 2124–2128.
  • Greaney, M.J., Nguyen, M.A., Chang, C.C., Good, A., and Margerum, L.D. (2010) Indicator displacement assays for amino acids using Ni-NTA tethered to PAMAM dendrimers on controlled pore glass. Chem. Commun., 46 (29): 5337–5339.
  • Leung, D. and Anslyn, E.V. (2008) Transitioning enantioselective indicator displacement assays for alpha-amino acids to protocols amenable to high-throughput screening. J. Am. Chem. Soc., 130 (37): 12328–12333.
  • Leung, D., Folmer-Andersen, J.F., Lynch, V.M., and Anslyn, E.V. (2008) Using enantioselective indicator displacement assays to determine the enantiomeric excess of alpha-amino acids. J. Am. Chem. Soc., 130 (37): 12318–12327.
  • Wiskur, S.L., Ait-Haddou, H., Lavigne, J.J., and Anslyn, E.V. (2001) Teaching old indicators new tricks. Acc. Chem. Res., 34 (12): 963–972.
  • Anslyn, E.V. (2007) Supramolecular analytical chemistry. J. Org. Chem., 72 (3): 687–699.
  • Joyce, L.A., Shabbir, S.H., and Anslyn, E.V. (2010) The uses of supramolecular chemistry in synthetic methodology development: examples of anion and neutral molecular recognition. Chem. Soc. Rev., 39 (10): 3621–3632.
  • Yildiz, I., Tomasulo, M., and Raymo, F.M. (2006) A mechanism to signal receptor–substrate interactions with luminescent quantum dots. Proc. Natl. Acad. Sci. USA, 103 (31): 11457–11460.
  • Wu, P. and Yan, X.-P. (2010) Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photoluminescent sensor for detecting histidine in biological fluids. Biosens. Bioelectron., 26 (2): 485–490.
  • He, Y., Wang, X., Zhu, J.J., Zhong, S.H., and Song, G.W. (2012) Ni2+-modified gold nanoclusters for fluorescence turn-on detection of histidine in biological fluids. Analyst, 137 (17): 4005–4009.
  • Shen, J.S., Yu, T., Xie, J.W., and Jiang, Y.B. (2009) Photoluminescence of CdTe nanocrystals modulated by methylene blue and DNA. A label-free luminescent signaling nanohybrid platform. Phys. Chem. Chem. Phys., 11 (25): 5062–5069.
  • Cordes, D.B., Gamsey, S., and Singaram, B. (2006) Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew. Chem. Int. Ed., 45 (23): 3829–3832.
  • Yuan, J.P., Guo, W.W., Yang, X.R., and Wang, E.K. (2009) Anticancer drug–DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots. Anal. Chem., 81 (1): 362–368.
  • Kim, J.S., and Quang, D.T. (2007) Calixarene-derived fluorescent probes. Chem. Rev., 107 (9): 3780–3799.
  • Kim, K. (2002) Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev., 31 (2): 96–107.
  • Chen, Y. and Liu, Y. (2010) Cyclodextrin-based bioactive supramolecular assemblies. Chem. Soc. Rev., 39 (2): 495–505.
  • Han, C.P. and Li, H.B. (2010) Host-molecule-coated quantum dots as fluorescent sensors. Anal. Bioanal. Chem., 397 (4): 1437–1444.
  • Freeman, R., Finder, T., Bahshi, L., and Willner, I. (2009) Beta-cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett., 9 (5): 2073–2076.
  • Aguilera-Sigalat, J., Casas-Solvas, J.M., Morant-Miñana, M.C., Vargas-Berenguel, A., Galian, R.E., and Pérez-Prieto, J. (2012) Quantum dot/cyclodextrin supramolecular systems based on efficient molecular recognition and their use for sensing. Chem. Commun., 48 (20): 2573–2575.
  • Bunz, U.H.F. and Rotello, V.M. (2010) Gold nanoparticle–fluorophore complexes: Sensitive and discerning “noses” for biosystems sensing. Angew. Chem. Int. Ed., 49 (19): 3268–3279.
  • Saha, K., Agasti, S.S., Kim, C., Li, X.N., and Rotello, V.M. (2012) Gold nanoparticles in chemical and biological sensing. Chem. Rev., 112 (5): 2739–2779.
  • Dulkeith, E., Morteani, A.C., Niedereichholz, T., Klar, T.A., Feldmann, J., Levi, S.A., van Veggel, F., Reinhoudt, D.N., Möller, M., and Gittins, D.I. (2002) Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett., 89 (20): 203002.
  • Ipe, B.I., Thomas, K.G., Barazzouk, S., Hotchandani, S., and Kamat, P.V. (2002) Photoinduced charge separation in a fluorophore–gold nanoassembly. J. Phys. Chem. B, 106 (1): 18–21.
  • Kim, I.B., Han, M.H., Phillips, R.L., Samanta, B., Rotello, V.M., Zhang, Z.J., and Bunz, U.H.F. (2009) Nano-conjugate fluorescence probe for the discrimination of phosphate and pyrophosphate. Chem. Eur. J., 15 (2): 449–456.
  • Oh, D.J., Kim, K.M., and Ahn, K.H. (2011) Nanoparticle-based indicator-displacement assay for pyrophosphate. Chem. Asian J., 6 (8): 2033–2038.
  • Chou, S.S., De, M., Luo, J.Y., Rotello, V.M., Huang, J.X., and Dravid, V.P. (2012) Nanoscale graphene oxide (nGO) as artificial receptors: Implications for biomolecular interactions and sensing. J. Am. Chem. Soc., 134 (40): 16725–16733.
  • Shang, L., Jin, L.H., and Dong, S.J. (2009) Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chem. Commun., (21): 3077–3079.
  • Chen, J.L., Zheng, A.F., Chen, A.H., Gao, Y.C., He, C.Y., Kai, X.M., Wu, G.H., and Chen, Y.C. (2007) A functionalized gold nanoparticles and rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples. Anal. Chim. Acta, 599 (1): 134–142.
  • He, X.R., Liu, H.B., Li, Y.L., Wang, S., Li, Y.J., Wang, N., Xiao, J.C., Xu, X.H., and Zhu, D.B. (2005) Gold nanoparticle–based fluorometric and colorimetric sensing of copper(II) ions. Adv. Mater., 17 (23): 2811–2815.
  • Shang, L., Yin, J.Y., Li, J., Jin, L.H., and Dong, S.J. (2009) Gold nanoparticle–based near-infrared fluorescent detection of biological thiols in human plasma. Biosens. Bioelectron., 25 (2): 269–274.
  • Fan, C.H., Wang, S., Hong, J.W., Bazan, G.C., Plaxco, K.W., and Heeger, A.J. (2003) Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc. Natl. Acad. Sci. USA, 100 (11): 6297–6301.
  • Shang, L., Qin, C.J., Wang, T., Wang, M., Wang, L.X., and Dong, S.J. (2007) Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine. J. Phys. Chem. C, 111 (36): 13414–13417.
  • You, C.C., Miranda, O.R., Gider, B., Ghosh, P.S., Kim, I.B., Erdogan, B., Krovi, S.A., Bunz, U.H.F., and Rotello, V.M. (2007) Detection and identification of proteins using nanoparticle-fluorescent polymer “chemical nose” sensors. Nat. Nanotechnol., 2 (5): 318–323.
  • De, M., Miranda, O.R., Rana, S., and Rotello, V.M. (2009) Size and geometry dependent protein–nanoparticle self-assembly. Chem. Commun. (16): 2157–2159.
  • Phillips, R.L., Miranda, O.R., You, C.C., Rotello, V.M., and Bunz, U.H.F. (2008) Rapid and efficient identification of bacteria using gold-nanoparticle-poly(para-phenyleneethynylene) constructs. Angew. Chem. Int. Ed., 47 (14): 2590–2594.
  • Bajaj, A., Miranda, O.R., Kim, I.B., Phillips, R.L., Jerry, D.J., Bunz, U.H.F., and Rotello, V.M. (2009) Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle–polymer sensor arrays. Proc. Natl. Acad. Sci. USA, 106 (27): 10912–10916.
  • Bajaj, A., Miranda, O.R., Phillips, R., Kim, I.B., Jerry, D.J., Bunz, U.H.F., and Rotello, V.M. (2010) Array-based sensing of normal, cancerous, and metastatic cells using conjugated fluorescent polymers. J. Am. Chem. Soc., 132 (3): 1018–1022.
  • Miranda, O.R., Creran, B., and Rotello, V.M. (2010) Array-based sensing with nanoparticles: “Chemical noses” for sensing biomolecules and cell surfaces. Curr. Opin. Chem. Biol., 14 (6): 728–736.
  • Halkyard, C.E., Rampey, M.E., Kloppenburg, L., Studer-Martinez, S.L., and Bunz, U.H.F. (1998) Evidence of aggregate formation for 2,5-dialkylpoly(p-phenyleneethynylenes) in solution and thin films. Macromolecules, 31 (25): 8655–8659.
  • Tsien, R.Y. (2009) Constructing and exploiting the fluorescent protein paintbox (Nobel lecture). Angew. Chem. Int. Ed., 48 (31): 5612–5626.
  • De, M., Rana, S., Akpinar, H., Miranda, O.R., Arvizo, R.R., Bunz, U.H.F., and Rotello, V.M. (2009) Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat. Chem., 1 (6): 461–465.
  • Bajaj, A., Rana, S., Miranda, O.R., Yawe, J.C., Jerry, D.J., Bunz, U.H.F., and Rotello, V.M. (2010) Cell surface–based differentiation of cell types and cancer states using a gold nanoparticle–GFP based sensing array. Chem. Sci., 1 (1): 134–138.
  • Rana, S., Singla, A.K., Bajaj, A., Elci, S.G., Miranda, O.R., Mout, R., Yan, B., Jirik, F.R., and Rotello, V.M. (2012) Array-based sensing of metastatic cells and tissues using nanoparticle–fluorescent protein conjugates. ACS Nano, 6 (9): 8233–8240.
  • Miranda, O.R., Chen, H.T., You, C.C., Mortenson, D.E., Yang, X.C., Bunz, U.H.F., and Rotello, V.M. (2010) Enzyme-amplified array sensing of proteins in solution and in biofluids. J. Am. Chem. Soc., 132 (14): 5285–5289.
  • Miranda, O.R., Li, X.N., Garcia-Gonzalez, L., Zhu, Z.J., Yan, B., Bunz, U.H.F., and Rotello, V.M. (2011) Colorimetric bacteria sensing using a supramolecular enzyme–nanoparticle biosensor. J. Am. Chem. Soc., 133 (25): 9650–9653.
  • Greene, N.T. and Shimizu, K.D. (2005) Colorimetric molecularly imprinted polymer sensor array using dye displacement. J. Am. Chem. Soc., 127 (15): 5695–5700.
  • Dsouza, R.N., Pischel, U., and Nau, W.M. (2011) Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev., 111 (12): 7941–7980.
  • Pandey, S., Ali, M., Kamath, G., Pandey, S., Baker, S.N., and Baker, G.A. (2012) Binding of the ionic liquid cation 1-alkyl-3-methylimidazolium to p-tetranitrocalix 4 arene probed by fluorescent indicator displacement. Anal. Bioanal. Chem., 403 (8): 2361–2366.
  • Siripornnoppakhun, W., Niamnont, N., Krumsri, A., Tumcharern, G., Vilaiyan, T., Rashatasakhon, P., Thayumanavan, S., and Sukwattanasinittt, M. (2012) Inclusion complexes between amphiphilic phenyleneethynylene fluorophores and cyclodextrins in aqueous media. J. Phys. Chem. B, 116 (40): 12268–12274.
  • Dsouza, R.N., Hennig, A., and Nau, W.M. (2012) Supramolecular tandem enzyme assays. Chem. Eur. J., 18 (12): 3444–3459.
  • Florea, M., Kudithipudi, S., Rei, A., González-Álvarez, M.J., Jeltsch, A., and Nau, W.M. (2012) A fluorescence-based supramolecular tandem assay for monitoring lysine methyltransferase activity in homogeneous solution. Chem. Eur. J., 18 (12): 3521–3528.
  • Guo, D.S., Uzunova, V.D., Su, X., Liu, Y., and Nau, W.M. (2011) Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chem. Sci., 2 (9): 1722–1734.
  • Nishijima, M., Pace, T.C.S., Nakamura, A., Mori, T., Wada, T., Bohne, C., and Inoue, Y. (2007) Supramolecular photochirogenesis with biomolecules. Mechanistic studies on the enantiodifferentiation for the photocyclodimerization of 2-anthracenecarboxylate mediated by bovine serum albumin. J. Org. Chem., 72 (8): 2707–2715.
  • Adams, M.M. and Anslyn, E.V. (2009) Differential sensing using proteins: Exploiting the cross-reactivity of serum albumin to pattern individual terpenes and terpenes in perfume. J. Am. Chem. Soc., 131 (47): 17068–17069.
  • Kubarych, C.J., Adams, M.M., and Anslyn, E.V. (2010) Serum albumins as differential receptors for the discrimination of fatty acids and oils. Org. Lett., 12 (21): 4780–4783.
  • Ivy, M.A., Gallagher, L.T., Ellington, A.D., and Anslyn, E.V. (2012) Exploration of plasticizer and plastic explosive detection and differentiation with serum albumin cross-reactive arrays. Chem. Sci., 3 (6): 1773–1779.
  • Torres, D.A., Azagarsamy, M.A., and Thayumanavan, S. (2012) Supramolecular displacement-mediated activation of a silent fluorescence probe for label-free ligand screening. J. Am. Chem. Soc., 134 (17): 7235–7237.
  • Hinds, J.A., Pincombe, C.F., Kanowski, R.K., Day, S.A., Sanderson, J.C., and Duffy, P. (1984) Ligand displacement immunoassay: A novel enzyme immunoassay demonstrated for measuring theophylline in serum. Clin. Chem., 30 (7): 1174–1178.
  • Holt, D.B., Kusterbeck, A.W., and Ligler, F.S. (2000) Continuous flow displacement immunosensors: A computational study. Anal. Biochem., 287 (2): 234–242.
  • Rabbany, S.Y., Lane, W.J., Marganski, W.A., Kusterbeck, A.W., and Ligler, F.S. (2000) Trace detection of explosives using a membrane-based displacement immunoassay. J. Immunol. Meth., 246 (1–2): 69–77.
  • Green, T.M., Charles, P.T., and Anderson, G.P. (2002) Detection of 2,4,6-trinitrotoluene in seawater using a reversed-displacement immunosensor. Anal. Biochem., 310 (1): 36–41.
  • Goldman, E.R., Anderson, G.P., Lebedev, N., Lingerfelt, B.M., Winter, P.T., Patterson, C.H., and Mauro, J.M. (2003) Analysis of aqueous 2,4,6-trinitrotoluene (TNT) using a fluorescent displacement immunoassay. Anal. Bioanal. Chem., 375 (4): 471–475.
  • Charles, P.T., Adams, A.A., Howell, P.B., Trammell, S.A., Deschamps, J.R., and Kusterbeck, A.W. (2010) Fluorescence-based sensing of 2,4,6-trinitrotoluene (TNT) using a multi-channeled poly(methyl methacrylate) (PMMA) microimmunosensor. Sensors, 10 (1): 876–889.
  • Bromage, E.S., Lackie, T., Unger, M.A., Ye, J., and Kaattari, S.L. (2007) The development of a real-time biosensor for the detection of trace levels of trinitrotoluene (TNT) in aquatic environments. Biosens. Bioelectron., 22 (11): 2532–2538.
  • Lates, V., Yang, C., Popescu, I.C., and Marty, J.L. (2012) Displacement immunoassay for the detection of ochratoxin A using ochratoxin B modified glass beads. Anal. Bioanal. Chem., 402 (9): 2861–2870.
  • Haes, A.J., Terray, A., and Collins, G.E. (2006) Bead-assisted displacement immunoassay for staphylococcal enterotoxin B on a microchip. Anal. Chem., 78 (24): 8412–8420.
  • van der Voort, D., Pelsers, M., Korf, J., Hermens, W.T., and Glatz, J.F.C. (2003) Development of a displacement immunoassay for human heart-type fatty acid–binding protein in plasma: The basic conditions. Biosens. Bioelectron., 19 (5): 465–471.
  • Goldman, E.R., Medintz, I.L., Whitley, J.L., Hayhurst, A., Clapp, A.R., Uyeda, H.T., Deschamps, J.R., Lassman, M.E., and Mattoussi, H. (2005) A hybrid quantum dot–antibody fragment fluorescence resonance energy transfer–based TNT sensor. J. Am. Chem. Soc., 127 (18): 6744–6751.
  • Kattke, M.D., Gao, E.J., Sapsford, K.E., Stephenson, L.D., and Kumar, A. (2011) FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors, 11 (6): 6396–6410.
  • Chang, J.C., Tomlinson, I.D., Warnement, M.R., Iwamoto, H., DeFelice, L.J., Blakely, R.D., and Rosenthal, S.J. (2011) A fluorescence displacement assay for antidepressant drug discovery based on ligand-conjugated quantum dots. J. Am. Chem. Soc., 133 (44): 17528–17531.
  • Han, D.M., Jia, W.P., Liang, H.D., and Yan, X.P. (2007) Flow injection on-line displacement sorption preconcentration coupled with flame atomic absorption spectrometry for the determination of trace lead in biological samples. Chin. J. Anal. Chem., 35 (11): 1643–1646.
  • He, W.J. and Yang, X.T. (2005) On-line FI displacement sorption preconcentration coupled with FAAS for trace sliver analysis in geological materials. Yankuang Ceshi, 24 (3): 197–200.
  • Christou, C.K. and Anthemidis, A.N. (2009) Flow injection on-line displacement/solid phase extraction system coupled with flame atomic absorption spectrometry for selective trace silver determination in water samples. Talanta, 78 (1): 144–149.
  • Liang, P. and Zhao, E.H. (2011) Determination of trace palladium in complicated matrices by displacement dispersive liquid–liquid microextraction and graphite furnace atomic absorption spectrometry. Microchim. Acta, 174 (1–2): 153–158.
  • Jia, W.P., Han, D.M., Gao, T., and Li, F. (2009) Flow injection on-line displacement solid phase extraction coupled with flame atomic absorption spectrometry for the selective determination of trace cadmium. At. Spectrosc., 30 (6): 201–207.
  • Zhao, L.P., Gong, Q.J., Sun, H., Yang, B.W., and Zhu, Y.D. (2010) Displacement solid phase extraction as preconcentration method for the determination of trace copper in water samples by electrothermal atomic absorption spectrometry. At. Spectrosc., 31 (6): 201–205.
  • Yang, B.W., Zhao, L.P., Sun, H., Ma, H.X., Meng, L.X., Ren, N.N., and Qin, J.X. (2011) Selective quantification of trace silver in water samples by displacement solidified floating organic drop microextraction coupled with electrothermal atomic absorption spectrometry. Spectrosc. Lett., 44 (5): 340–346.
  • Han, B.Y., Yuan, J.P., and Wang, E.K. (2009) Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots–Hg(II) system. Anal. Chem., 81 (13): 5569–5573.
  • Shang, L., Zhang, L.H., and Dong, S.J. (2009) Turn-on fluorescent cyanide sensor based on copper ion–modified CdTe quantum dots. Analyst, 134 (1): 107–113.
  • Zhou, L., Lin, Y.H., Huang, Z.Z., Ren, J.S., and Qu, X.G. (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem. Commun., 48 (8): 1147–1149.
  • Touceda-Varela, A., Stevenson, E.I., Galve-Gasion, J.A., Dryden, D.T.F., and Mareque-Rivas, J.C. (2008) Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots. Chem. Commun., (17): 1998–2000.
  • Maldonado, C.R., Touceda-Varela, A., Jones, A.C., and Mareque-Rivas, J.C. (2011) A turn-on fluorescence sensor for cyanide from mechanochemical reactions between quantum dots and copper complexes. Chem. Commun., 47 (42): 11700–11702.
  • Zhang, L., Zhu, K., Ding, T., Hu, X., Sun, Q., and Xu, C. (2013) Quantum dot–phenanthroline dyads: Detection of double-stranded DNA using a photoinduced hole transfer mechanism. Analyst, 138 (3): 887–893.
  • Xia, Y.S., Wang, J.J., Zhang, Y.Z., Song, L., Ye, J.J., Yang, G., and Tan, K.H. (2012) Quantum dot based turn-on fluorescent probes for anion sensing. Nanoscale, 4 (19): 5954–5959.
  • Zhao, D., Chan, W.H., He, Z.K., and Qiu, T. (2009) Quantum dot–ruthenium complex dyads: Recognition of double-strand DNA through dual-color fluorescence detection. Anal. Chem., 81 (9): 3537–3543.
  • Hong, J.Q., Pei, D.J., and Guo, X.Q. (2012) Quantum dot–Eu3+ conjugate as a luminescence turn-on sensor for ultrasensitive detection of nucleoside triphosphates. Talanta, 99: 939–943.
  • Liu, Z., Liu, S., Wang, X., Li, P., and He, Y. (2013) A novel quantum dots-based OFF–ON fluorescent biosensor for highly selective and sensitive detection of double-strand DNA. Sens. Actuators B, 176: 1147–1153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.