220
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Vibrational Spectral Biodiagnosis of Ocular Calcification

References

  • Hayflick, L. (1998) How and why we age. Exp. Gerontol., 33: 639–653.
  • Hayflick, L. (2000) The future of ageing. Nature, 408: 267–269.
  • Kirkwood, T.B. (2005) Understanding the odd science of aging. Cell, 120: 437–447.
  • Kart, C.S., Metress, E.K., and Metress, S.P. (1992) Human Aging and Chronic Disease. Jones and Bartlett: Boston.
  • Magalhães, J.P. (2013) What is aging? Available at: http://www.senescence.info/aging_definition.html (accessed February 23, 2013).
  • Tousimis, A.J. and Schatten, H.B. (2006) Mineralization in mammalian growth, aging, and disease. Microsc. Microanal., 12: 234–235.
  • Grynpas, M. (1993) Age and disease-related changes in the mineral of bone. Calcif. Tissue Int., 53: S57–S64.
  • Orimo, H. (2010) The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J. Nihon Med. Sch., 77: 4–12.
  • Golub, E.E. (2011) Biomineralization and matrix vesicles in biology and pathology. Semin. Immunopathol., 33: 409–417.
  • Kawasaki, K., Buchanan, A.V., and Weiss, K.M. (2009) Biomineralization in humans: making the hard choices in life. Annu. Rev. Genet., 43: 119–142.
  • Bonucci, E. (2006) Biological Calcification: Normal and Pathological Processes in the Early Stages. Springer Verlag: Heidelberg, Germany.
  • Peacock, M. (2010) Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol., 5: S23–S30.
  • Kirsch, T. (2006) Determinants of pathological mineralization. Curr. Opin. Rheumatol., 18: 174–180.
  • Mosbaugh, J.D. and Carlson, G.D. (2013) Soft tissue calcification: Renewed perspective on a pathological process. Available at: http://hearthealthyworld.com/media/STC%20Renewed%20Perspective.pdf (accessed February 23, 2013).
  • Block, G.A. (2000) Prevalence and clinical consequences of elevated Ca × P product in hemodialysis patients. Clin. Nephrol., 54: 318–324.
  • Banks, K.P., Bui-Mansfield, L.T., Chew, F.S., and Collinson, F. (2005) A compartmental approach to the radiographic evaluation of soft-tissue calcifications. Semin. Roentgenol., 40: 391–407.
  • Fuller, M.J. (2013) Soft tissue calcification. Available at: http://www.wikiradiography.com/ page/Soft+Tissue+Calcification (accessed February 23, 2013).
  • Black, A.S. and Kanat, I.O. (1985) A review of soft tissue calcifications. J. Foot Surg., 24: 243–250.
  • Kumar, V., Abbas, A.K., Fausto, N., and Aster, J. (2009) Robbins and Cotran Pathologic Basis of Disease. 8th ed. Saunders: Philadelphia.
  • Dalinka, M.K. and Melchior, E.L. (1980) Soft tissue calcifications in systemic disease. Bull. N. Y. Acad. Med., 56: 539–563.
  • Schlieper, G., Westenfeld, R., Brandenburg, V., and Ketteler, M. (2007) Inhibitors of calcification in blood and urine. Semin. Dial., 20: 113–121.
  • Anderson, H.C. (1988) Mechanisms of pathologic calcification. Rheum. Dis. Clin. North Am., 14: 303–319.
  • Boskey, A.L. (1998) Biomineralization: conflicts, challenges, and opportunities. J. Cell Biochem., 30–31: 83–91.
  • Giachelli, C.M. (1999) Ectopic calcification: Gathering hard facts about soft tissue mineralization. Am. J. Pathol., 154: 671–675.
  • Atkinson, J. (2008) Age-related medial elastocalcinosis in arteries: Mechanisms, animal models, and physiological consequences. J Appl Physiol., 105: 1643–1651.
  • Boskey, A.L. (2007) Mineralization of bones and teeth. Elements, 3: 385–391.
  • Brancaccio, D. and Cozzolino, M. (2005) The mechanism of calcium deposition in soft tissues. Contrib. Nephrol., 149: 279–286.
  • Weiner, S. and Addadi, L. (1997) Design strategies in mineralized biological materials. J. Mater. Chem., 7: 689–702.
  • Bron, A.J., Vrensen, G.F., Koretz, J., Maraini, G., and Harding, J.J. (2000) The ageing lens. Ophthalmologica, 214: 86–104.
  • Krampitz, G. and Witt, W. (1979) Biochemical aspects of biomineralization. Top. Curr. Chem., 78: 57–144.
  • Dorozhkin, S.V. (2010) Amorphous calcium (ortho)phosphates. Acta Biomater., 6: 4457–4475.
  • Ringvold, A., Sagen, E., Bjerve, K.S., and Følling, I. (1988) The calcium and magnesium content of the human lens and aqueous humour. A study in patients with hypocalcemic and senile cataract. Acta Ophthalmol., 66: 153–156.
  • Gupta, P.D., Johar, K., and Vasavada, A. (2004) Causative and preventive action of calcium in cataracto-genesis. Acta Pharmacol. Sin., 25: 1250–1256.
  • Drüeke, T. and Salusky, I. (2002) The Spectrum of Renal Osteodystrophy. Oxford University Press: Oxford, England.
  • Pinto, M.R., De Medici, S., Zlotnicki, A., Bianchi, A., Van Sant, C., and Napoli, C. (1997) Reduced visual acuity in elderly people: The role of ergonomics and gerontechnology. Age Ageing, 26: 339–344.
  • Stawell, R.J. and Hall, A.J. (2002) Eye signs in systemic disease. Aust. Fam. Physician, 31: 217–223.
  • Lin, C.C., Kuo, M.T., and Chang, H.C. (2010) Raman spectroscopy—A novel tool for noninvasive ocular surface fluid analysis. J. Med. Biol. Eng., 30: 343–354.
  • National Kidney Foundation. (2003) Clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis., 42 (4 Suppl. 3): S1–201.
  • Oyster, C.W. (1999) The Human Eye: Structure and Function. Sinauer Associates: Sunderland, MA.
  • Augusteyn, R.C. (2010) On the growth and internal structure of the human lens. Exp. Eye Res., 90: 643–654.
  • Kaplan, H.J. (2007) Anatomy and function of the eye. Chem. Immunol. Allergy, 92: 4–10.
  • Weikel, K.A., Taylor, A., and Chiu, C.J. (2012) Nutritional modulation of age-related macular degeneration. Mol. Aspect. Med., 33: 318–375.
  • Kinnunen, K. and Yla-Herttuala, S. (2012) Gene therapy in age related and hereditary macular disorders. Front. Biosci., 4: 2546–2557.
  • Hedges, T.R., III, Pozzi-Mucelli, R., Char, D.H., and Newton, T.H. (1982) Computed tomographic demonstration of ocular calcification correlations with clinical and pathological findings. Neuroradiology, 23: 15–21.
  • Plummer, C.E., Specht, A., and Gelatt, K.N. (2007) Ocular manifestations of endocrine disease. Compend. Cont. Educ. Vet., 29: 733–743.
  • Fu, E.X., Hayden, B.C., and Singh, A.D. (2008) Intraocular tumors. Ultrasound Clin., 3: 229–244.
  • Mafee, M.F., Valvassori, G.E., and Becker, M. (2005) Imaging of the Head and Neck. 2nd ed. Thieme Verlag: Stuttgardt, Germany.
  • Caldemeyer, K.S., Smith, R.R., and Edwards-Brown, M.K. (1995) Familial hypophosphatemic rickets causing ocular calcification and optic canal narrowing. Am. J. Neuroradiol., 16: 1252–1254.
  • Sudheim, J.L. and Lapayowker, M.S. (1976) Calcification and ossification within the orbit. Radiology, 121: 391–397.
  • Alsalam, H. (2013) Ocular calcification. Available at: http://maptini.com/maps/4286368C-5950–438E-9A7A-96F0E8CC8BFD (accessed February 23 2013).
  • Walsh, F.B. and Howard, J.E. (1947) Conjunctival and corneal lesions in hypercalcemia. J. Clin. Endocrinol. Metab., 7: 644–652.
  • Duffey, R.J. and LoCascio, J.A., III. (1987) Calcium deposition in a corneal graft. Cornea, 6: 212–215.
  • Schrage, N.F., Schlossmacher, B., Aschenbernner, W., and Langefeld, S. (2001) Phosphate buffer in alkali eye burns as an inducer of experimental corneal calcification. Burns, 27: 459–464.
  • Anderson, S.B., de Souza, R.F., Hofmann-Rummelt, C., and Seitz, B. (2003) Corneal calcification after amniotic membrane transplantation. Br. J. Ophthalmol., 87: 587–591.
  • Lavid, F.J., Herreras, J.M., Calonge, M., Saornil, M.A., and Aguirre, C. (1995) Calcareous corneal degeneration: Report of two cases. Cornea, 14, 97–102.
  • Jhanji, V., Rapuano, C.J., and Vajpayee, R.B. (2011) Corneal calcific band keratopathy. Curr. Opin. Ophthalmol., 22: 283–289.
  • Klaassen-Broekema, N. and van Bijsterveld, O.P. (1993) Limbal and corneal calcification in patients with chronic renal failure. Br. J. Ophthalmol., 77: 569–571.
  • Schlötzer-Schrehardt, U., Zagórski, Z., Holbach, L.M., Hofmann-Rummelt, C., and Naumann, G.O. (1999) Corneal stromal calcification after topical steroid–phosphate therapy. Arch Ophthalmol., 117: 1414–1418.
  • Scroggs, M.W. and Klintworth, G.K. (1991) Senile scleral plaques: A histopathologic study using energy-dispersive X-ray microanalysis. Hum Pathol., 22: 557–562.
  • Brown, C.T., Vural, M., Johnson, M., and Trinkaus-Randall, V. (1994) Age-related changes of scleral hydration and sulfated glycosaminoglycans. Mech. Ageing Dev., 77: 97–107.
  • Watson, P.G. and Young, R.D. (2004) Scleral structure, organisation and disease. A review. Exp. Eye Res., 78: 609–623.
  • Okhravi, N., Odufuwa, B., M.cCluskey, P., and Lightman, S. (2005) Scleritis. Surv. Ophthalmol., 50: 351–363.
  • Kim, B.H. (2011) Surgical treatment of necrotic scleral calcification using combined conjunctival autografting and an amniotic membrane inlay filling technique. Eye, 25: 1484–1490.
  • Kowal, V.O., Adamis, A.P., and Albert, D.M. (1992) Conjunctival concretions. Am. J. Ophthalmol., 114: 640–641.
  • Kulshrestha, M.K. and Thaller, VT. (1995) Prevalence of conjunctival concretions. Eye, 9: 797–798.
  • Chen, K.H., Cheng, W.T., Li, M.J., Yang, D.M., and Lin, S.Y. (2005) Calcification of senile cataractous lens determined by Fourier transform infrared (FTIR) and Raman microspectroscopies. J. Microsc., 219: 36–41.
  • Hernandez, C.M. (2010) Cataracts: Causes, Symptoms, and Surgery. Nova Science Publishers: New York.
  • Hockwin, O. (1994–1995) Cataract classification. Doc Ophthalmol., 88: 263–275.
  • Schachat, A.P., Robertson, D.M., Mieler, W.F., Schwartz, D., Augsburger, J.J., Schatz, H., and Gass, J.D. (1992) Sclerochoroidal calcification. Arch Ophthalmol., 110: 196–199.
  • Honavar, S.G., Shields, C.L., Demirci, H., and Shields, J.A. (2001) Sclerochoroidal calcification: Clinical manifestations and systemic associations. Arch Ophthalmol., 119: 833–840.
  • Cooke, C.A., McAvoy, C., and Best, R. (2003) Idiopathic sclerochoroidal calcification. Br. J. Ophthalmol., 87: 245–246.
  • Yazar, Z., Hanioglu, S., Karakoç, G., and Gürsel, E. (2001) Asteroid hyalosis. Eur. J. Ophthalmol., 11: 57–61.
  • Mitchell, P., Wang, M.Y., and Wang, J.J. (2003) Asteroid hyalosis in an older population: The Blue Mountains Eye Study. Ophthalmic Epidemiol., 10: 331–335.
  • Moss, S.E., Klein, R., and Klein, B.E. (2001) Asteroid hyalosis in a population: The Beaver Dam Eye Study. Am. J. Ophthalmol., 132: 70–75.
  • Lin, S.Y., Chen, K.H., Cheng, W.T., Ho, C.T., and Wang, S.L. (2007) Preliminary identification of beta-carotene in the vitreous asteroid bodies by micro-Raman spectroscopy and HPLC analysis. Microsc. Microanal., 13: 128–132.
  • Bergren, R.L., Brown, G.C., and Duker, J.S. (1991) Prevalence and association of asteroid hyalosis with systemic diseases. Am. J. Ophthalmol., 111: 289–293.
  • Akram, A., Niazi, M.K., Ishaq, M., and Azad, N. (2003) Frequency of diabetics in asteroid hyalosis patients. J. Ayub. Med. Coll. Abbottabad., 15: 10–11.
  • Giles, J., Singh, A.D., Rundle, P.A., Noe, K.P., and Rennie, I.G. (2005) Retinal astrocytic hamartoma with exudation. Eye, 19: 724–725.
  • Ahmed, R., Khetpal, V., Merin, L.M., and Chomsky, A.S. (2008) Retrospective review of incidental retinal emboli found on diabetic retinopathy screening: Is there a benefit to referral for work-up and possible management? Clin. Diabetes, 26: 179–182.
  • Sathyanarayana, D.N. (2007) Vibrational Spectroscopy: Theory and Applications. New Age International: New Delhi.
  • Krafft, C. and Sergo, V. (2006) Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. J. Spectrosc., 20: 195–218.
  • Petrich, W. (2001) Mid-infrared and Raman spectroscopy for medical diagnostics. Appl. Spectrosc. Rev., 36: 181–237.
  • Furic, K., Mohacek-Grosev, V., and Hadzija, M. (2005) Development of cataract caused by diabetes mellitus: Raman study. J. Mol. Struct., 744–747: 169–177.
  • Thygesen, L.G., Lokke, M.M., Micklander, E., and Engelsen, SB. (2003) Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends Food Sci. Technol., 14: 50–57.
  • Wetzel, D.L. and LeVine, S.M. (1999) Imaging molecular chemistry with infrared microscopy. Science, 285: 1224–1225.
  • Ellis, D.I. and Goodacre, R. (2006) Metabolic fingerprinting in disease diagnosis: Biomedical applications of infrared and Raman spectroscopy. Analyst, 131: 875–885.
  • Srinivasan, G. (2010) Vibrational Spectroscopic Imaging for Biomedical Applications. McGraw-Hill: New York.
  • Clark, R.J.H. and Hester, R.E. (1996) Biomedical Applications of Spectroscopy. Wiley: Chichester, UK.
  • Kalasinsky, V.F., Marie Jenkins, H., and Johnson, F.B. (2002) Applications of vibrational microspectroscopy to pathology specimens. Vib. Spectrosc., 28: 199–207.
  • Lin, S.Y., Li, M.J., and Cheng, W.T. (2007) FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues. Spectroscopy-AIJ, 21: 1–30.
  • Singh, B., Gautam, R., Kumar, S., Vinay Kumar, B.N., Nongthomba, U., Nandi, D., Mukherjee, G., Santosh, V., Somasundaram, K., and Umapathy, S. (2012) Application of vibrational microspectroscopy to biology and medicine. Curr. Sci., 102: 232–244.
  • Carden, A. and Morris, M.D. (2000) Application of vibrational spectroscopy to the study of mineralized tissues. J. Biomed. Opt., 5: 259–268.
  • Fernandez, D.C., Bhargava, R., Hewitt, S.M., and Levin, I.W. (2005) Infrared spectroscopic imaging for histopathologic recognition. Nat. Biotechnol., 23: 469–474.
  • Petibois, C. and Déléris, G. (2006) Chemical mapping of tumor progression by FT-IR imaging: Towards molecular histopathology. Trends Biotechnol., 24: 455–462.
  • Krafft, C., Kirsch, M., Beleites, C., Schackert, G., and Salzer, R. (2007) Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains. Anal. Bioanal. Chem., 389: 1133–1142.
  • Krafft, C., Steiner, G., Beleites, C., and Salzer, R. (2009) Disease recognition by infrared and Raman spectroscopy. J. Biophotonics, 2: 13–28.
  • Zavaleta, C.L., Kircher, M.F., and Gambhir, S.S. (2011) Raman's “effect” on molecular imaging. J. Nucl. Med., 5: 1839–1844.
  • Wartewig, S. and Neubert, R.H. (2005) Pharmaceutical applications of mid-IR and Raman spectroscopy. Adv. Drug Delivery Rev., 57: 1144–1170.
  • Salzer, R. and Siesler, H.W. (2009) Infrared and Raman Spectroscopic Imaging. Wiley-VCH: Weinheim, Germany.
  • Zhang, Y., Hong, H., and Cai, W. (2010) Imaging with Raman spectroscopy. Curr. Pharm. Biotechnol., 11: 654–661.
  • McNaughton, D. and Wood, B.R. (2011) Synchrotron infrared spectroscopy of cells and tissue. Aust. J. Chem., 65: 218–228.
  • Wallace, V.P., Taday, P.F., Fitzgerald, A.J., Woodward, R.M., Cluff, J., Pye, R.J., and Arnone, D.D. (2004) Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications. Faraday Discuss., 126: 255–263, 303–311.
  • Pickwell, E. and Wallace, V.P. (2006) Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys., 39: R301–R310.
  • Sun, Y., Sy, M.Y., Wang, Y.X., Ahuja, A.T., Zhang, Y.T., and Pickwell-Macpherson, E. (2011) A promising diagnostic method: Terahertz pulsed imaging and spectroscopy. World J. Radiol., 3: 55–65.
  • Bennett, D.B., Taylor, Z.D., Tewari, P., Singh, R.S., Culjat, M.O., Grundfest, W.S., Sassoon, D.J., Johnson, R.D., Hubschman, J.P., and Brown, E.R. (2011) Terahertz sensing in corneal tissues. J. Biomed. Opt., 16: 057003.
  • von Fischern, T., Lorenz, U., Burchard, W.G., Reim, M., and Schrage, N.F. (1998) Changes in mineral composition of rabbit corneas after alkali burn. Graefes Arch. Clin. Exp. Ophthalmol., 236: 553–558.
  • Schrage, N.F., Schlossmacher, B., Aschenbernner, W., and Langefeld, S. (2007) Phosphate buffer in alkali eye burns as an inducer of experimental corneal calcification. Burns, 27: 459–464.
  • Cursino, J.W. and Fine, B.S. (1976) A histologic study of calcific and noncalcific band keratopathies. Am. J. Ophthalmol., 82: 395–404.
  • Freddo, T.F. and Leibowitz, H.M. (1985) Bilateral acute corneal calcification. Ophthalmology, 92: 537–542.
  • Sharif, K.W., Casey, T.A., Casey, R., and Hoe, W.K. (1992) Penetrating keratoplasty for bilateral acute corneal calcification. Cornea, 11: 155–162.
  • Pecorella, I., McCartney, A.C., Lucas, S., Brady, K., Miller, R., Ciardi, A., Di Tondo, U., and Garner, A. (1996) Acquired immunodeficiency syndrome and ocular calcification. Cornea, 15: 305–311.
  • Campos, M., Nielsen, S., Szerenyi, K., Garbus, J.J., and McDonnell, P.J. (1993) Clinical follow-up of phototherapeutic keratectomy for treatment of corneal opacities. Am J Ophthalmol., 115: 433–440.
  • Daly, M., Tuft, S.J., and Munro, P.M. (2005) Acute corneal calcification following chemical injury. Cornea, 24: 761–765.
  • Mizuno, A., Tsuji, M., Fujii, K., Kawauchi, K., and Ozaki, Y. (1994) Near-infrared Fourier transform Raman spectroscopic study of cornea and sclera. Jpn. J. Ophthalmol.44–48.
  • Bauer, N.J., Wicksted, J.P., Jongsma, F.H., March, W.F., Hendrikse, F., and Motamedi, M. (1998) Noninvasive assessment of the hydration gradient across the cornea using confocal Raman spectroscopy. Invest. Ophthalmol. Vis. Sci., 39: 831–835.
  • Bauer, N.J., Hendrikse, F., and March, W.F. (1999) In vivo confocal Raman spectroscopy of the human cornea. Cornea, 18: 483–488.
  • Erckens, R.J., Jongsma, F.H.M., Wicksted, J.P., Hendrikse, F., March, W.F., and Motamedi, M. (2011) Drug‐induced corneal hydration changes monitored in vivo by non‐invasive confocal Raman spectroscopy. J. Raman Spectro., 32: 733–737.
  • Fisher, B.T., Masiello, K.A., Goldstein, M.H., and Hahn, D.W. (2003) Assessment of transient changes in corneal hydration using confocal Raman spectroscopy. Cornea, 22: 363–370.
  • Gellermann, W., Ermakov, I.V., Ermakova, M.R., McClane, R.W., Zhao, D.Y., and Bernstein, P.S. (2002) In vivo resonant Raman measurement of macular carotenoid pigments in the young and the aging human retina. J. Opt. Soc. Am. A, 19: 1172–1186.
  • Doughman, D.J., Olson, G.A., Nolan, S., and Hajny, R.G. (1969) Experimental band keratopathy. Arch Ophthalmol., 81: 264–271.
  • O’Connor, G.R. (1972) Calcific band keratopathy. Trans. Am. Ophthalmol. Soc., 70: 58–81.
  • Messmer, E.M., Hoops, J.P., and Kampik, A. (2005) Bilateral recurrent calcareous degeneration of the cornea. Cornea, 24: 498–502.
  • Islam, S.S., Doyle, E.J., Velilla, A., Martin, C.J., and Ducatman, A.M. (2000) Epidemiology of compensable work-related ocular injuries and illnesses: Incidence and risk factors. J. Occup. Environ. Med., 42: 575–581.
  • Chui, J.J., Ooi, K.G., Reeves, D., and Francis, I.C. (2011) Bluebottle envenomation-induced crystalline keratopathy. Cornea., 30: 835–837.
  • Yamamoto, T., Imura, S., and Yamamoto, N. (2010) Evaluation of the effects of the ultra‐violet radiation of Antarctica on bovine corneas and lenses by Raman spectroscopy. Am. Inst. Phys. Conf. Proc., 1267: 324–325.
  • Chen, K.H., Cheng, W.T., Li, M.J., and Lin, S.Y. (2006) Coneal calcification: Chemical compositions of calcified deposit. Graefe's Arch. Clin. Exp. Ophthal., 244: 407–419.
  • Pleshko, N., Boskey, A., and Mendelsohn, R. (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys. J., 60: 786–793.
  • Bentley, A.J., Nakamura, T., Hammiche, A., Pollock, H.M., Martin, F.L., Kinoshita, S., and Fullwood, N.J. (2007) Characterization of human corneal stem cells by synchrotron infrared micro-spectroscopy. Mol. Vis., 13: 237–242.
  • Nakamura, T., Kelly, J.G., Trevisan, J., Cooper, L.J., Bentley, A.J., Carmichael, P.L., Scott, A.D., Cotte, M., Susini, J., Martin-Hirsch, P.L., Kinoshita, S., Fullwood, N.J., and Martin, F.L. (2010) Microspectroscopy of spectral biomarkers associated with human corneal stem cells. Mol. Vis., 16: 359–368.
  • Kulshrestha, M.K. and Thaller, V.T. (1995) Prevalence of conjunctival concretions. Eye, 9: 797–798.
  • Seyahi, N., Altiparmak, M.R., Kahveci, A., Yetik, H., Kanberoglu, K., Serdengecti, K., Ataman, R., and Erek, E. (2005) Association of conjunctival and corneal calcification with vascular calcification in dialysis patients. Am. J. Kidney Dis., 45: 550–556.
  • Tokuyama, T., Ikeda, T., Sato, K., Mimura, O., Morita, A., and Tabata, T. (2002) Conjunctival and corneal calcification and bone metabolism in hemodialysis patients. Am. J. Kidney Dis., 39: 291–296.
  • Crombie, A.L. (1973) Corneal and conjunctival calcification in chronic renal failure. Br. J. Ophthalmol., 57: 339–343.
  • Canellos, H.M., Cooper, J., Paek, A., and Chien, J. (2005) Multiple calcified deposits along the eyelid margins secondary to chronic renal failure and hyperparathyroidism. Optometry, 76: 181–184.
  • Tosun, O., Davutluoglu, B., Arda, K., Boran, M., Yarangumeli, A., Kurt, A., and Ozkan, D. (2007) Determination of the effect of a single hemodialysis session on retrobulbar blood hemodynamics by color Doppler ultrasonography. Acta Radiol., 48: 763–767.
  • Evans, R.D. and Rosner, M. (2005) Ocular abnormalities associated with advanced kidney disease and hemodialysis. Semin Dial., 18: 252–257.
  • Berlyne, G.M. (1968) Microcrystalline conjunctival calcification in renal failure. A useful clinical sign. Lancet, 2: 366–370.
  • Berlyne, G.M. and Shaw, A.B. (1967) Red eyes in renal failure. Lancet, 1: 4–7.
  • Vignanelli, M. and Stucchi, C.A. (1988) Conjunctival calcification in patients in chronic hemodialysis. Morphologic, clinical and epidemiologic study. J. Fr. Ophtalmol., 11: 483–492.
  • Schirner, G., Schrage, N.F., Salla, S., Reim, M., and Burchard, W.G. (1995) Conjunctival tissue examination in severe eye burns: A study with scanning electron microscopy and energy-dispersive X-ray analysis. Graefes Arch. Clin. Exp. Ophthalmol., 233: 251–256.
  • Mauro, J. and Foster, C.S. (2009) Pterygia: Pathogenesis and the role of subconjunctival bevacizumab in treatment. Semin Ophthalmol., 24: 130–134.
  • Shen, A., Ye, Y., Wang, X., Chen, C., Zhang, H., and Hu, J. (2005) Raman scattering properties of human pterygium tissue. J. Biomed. Opt., 10: 024036.
  • Cheng, J.X. and Xie, X.S. (2004) Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. J. Phys. Chem. B., 108: 827–840.
  • Evans, C.L. and Xie, X.S. (2008) Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine. Annu. Rev. Anal. Chem., 1: 883–909.
  • Cheng, J.X. (2007) Coherent anti-Stokes Raman scattering microscopy. Appl. Spectrosc., 91: 197–208.
  • Lin, C.Y., Suhalim, J.L., Nien, C.L., Miljković, M.D., Diem, M., Jester, J.V., and Potma, E.O. (2011) Picosecond spectral coherent anti-Stokes Raman scattering imaging with principal component analysis of meibomian glands. J. Biomed. Opt., 16: 021104.
  • Duncan, G., Wormstone, I.M., and Davies, P.D. (1997) The aging human lens: Structure, growth, and physiological behaviour. Br. J. Ophthalmol., 81: 818–823.
  • Kahn, H.A., Leibowitz, H.M., and Ganley, J.P. (1977) The Framingham Eye Study. 1. Outline and major prevalence. Am. J. Epidemiol., 106: 17–32.
  • Balasubramanian, D. (2000) Ultraviolet radiation and cataract. J. Ocul. Pharmacol. Ther., 16: 285–297.
  • Varma, S.D., Kovtun, S., and Hegde, K.R. (2011) Role of ultraviolet irradiation and oxidative stress in cataract formation—Medical prevention by nutritional antioxidants and metabolic agonists. Eye Contact Lens, 37: 233–245.
  • Michael, R. and Bron, A.J. (2011) The ageing lens and cataract: A model of normal and pathological ageing. Philos. Trans. R. Soc. London, Ser. B, 366: 1278–1292.
  • Thylefors, B., Négrel, A.D., Pararajasegaram, R., and Dadzie, K.Y. (1995) Global data on blindness. Bull. World Health Organ., 73: 115–121.
  • Ozaki, Y., Mizuno, A., Itoh, K., and Iriyama, K. (1987) Inter- and intramolecular disulfide bond formation and related structural changes in the lens proteins. A Raman spectroscopic study in vivo of lens aging. J. Biol. Chem., 262: 15545–15551.
  • Mizuno, A. and Ozaki, Y. (1991) Aging and cataractous process of the lens detected by laser Raman spectroscopy. Lens Eye Toxic Res., 8: 177–187.
  • Yu, N.T., DeNagel, D.C., Pruett, P.L., and Kuck, J.F., Jr. (1985) Disulfide bond formation in the eye lens. Proc. Natl. Acad. Sci. USA, 82: 7965–7968.
  • Gosselin, M.E., Kapustij, C.J., Venkateswaran, U.D., Leverenz, V.R., and Giblin, F.J. (2007) Raman spectroscopic evidence for nuclear disulfide in isolated lenses of hyperbaric oxygen-treated guinea pigs. Exp. Eye Res., 84: 493–499.
  • Hum, T.P. and Augusteyn, R.C. (1987) The nature of disulphide bonds in rat lens proteins. Curr. Eye Res., 6: 1103–1108.
  • Horikiri, K., Nakajima, H., Matsuura, T., Narama, I., Fujimoto, Y., and Ozaki, Y. (1992) Estimation of structural changes in the cataractous rat lens using Raman spectroscopy. Jikken Dobutsu, 41: 225–230.
  • Mizuno, A., Kanematsu, E.H., Suzuki, H., and Ihara, N. (1988) Laser Raman spectroscopic study of hereditary cataractous lenses in ICR/f-strain rat. Jpn. J. Ophthalmol., 32: 281–287.
  • Ozaki, Y. (1988) Medical application of Raman spectroscopy. Appl. Spectrosc. Rev., 24: 259–312.
  • Iriyama, K., Mizuno, A., Ozaki, Y., Itoh, K., and Matsuzaki, H. (1982–1983) An application of laser Raman spectroscopy to the study of a hereditary cataractous lens; on the Raman band for a diagnostic marker of cataractous signatures. Curr. Eye Res., 2: 489–492.
  • Bettelheim, F.A., Ali, S., White, O., and Chylack, L.T., Jr. (1986) Freezable and non-freezable water content of cataractous human lenses. Invest. Ophthalmol. Vis. Sci., 27: 122–125.
  • Bettelheim, F.A., Castoro, J.A., White, O., and Chylack, L.T., Jr. (1986) Topographic correspondence between total and non-freezable water content and the appearance of cataract in human lenses. Curr. Eye Res., 5: 925–932.
  • Huizinga, A., Bot, A.C., de Mul, F.F., Vrensen, G.F., and Greve, J. (1989) Local variation in absolute water content of human and rabbit eye lenses measured by Raman microspectroscopy. Exp. Eye Res., 48: 487–496.
  • Yang, X.L., Xu, H., Han, X.X., and Sun, Y. (1995) Laser Raman spectrum study of a normal embryo lens and a senile cataractous lens. Laser Technol., 19: 382–384.
  • Huang, F.Y., Ho, Y., Hsu, M.C., and Wong, F.Z. (1999) Preliminary study on cataractous human lenses using near-infrared Fourier transform Raman spectroscopy. J. Chin. Chem. Soc., 46: 121–126.
  • Siebinga, I., Vrensen, G.F., De Mul, F.F., and Greve, J. (1991) Age-related changes in local water and protein content of human eye lenses measured by Raman microspectroscopy. Exp. Eye Res., 53: 233–239.
  • Siebinga, I., Vrensen, G.F., Otto, K., Puppels, G.J., De Mul, F.F., and Greve, J. (1992) Ageing and changes in protein conformation in the human lens: A Raman microspectroscopic study. Exp. Eye Res., 54: 759–767.
  • Hoenders, H.J. and Bloemendal, H. (1983) Lens proteins and aging. J. Gerontol., 38: 278–286.
  • Yu, N.T. and East, E.J. (1975) Laser Raman spectroscopic studies of ocular lens and its isolated protein fractions. J. Biol. Chem., 250: 2196–2202.
  • Ozaki, Y., Mizuno, A., Itoh, K., Yoshiura, M., Iwamoto, T., and Iriyama, K. (1983) Raman spectroscopic study of age-related structural changes in the lens proteins of an intact mouse lens. Biochemistry, 22: 6254–6259.
  • Smeets, M.H., Vrensen, G.F., Otto, K., Puppels, G.J., and Greve, J. (1993) Local variations in protein structure in the human eye lens: A Raman microspectroscopic study. Biochim Biophys Acta, 1164: 236–242.
  • Duindam, J.J., Vrensen, G.F., Otto, C., and Greve, J. (1998) Cholesterol, phospholipid, and protein changes in focal opacities in the human eye lens. Invest. Ophthalmol. Vis. Sci., 39: 94–103.
  • Kistler, J. and Bullivant, S. (1989) Structural and molecular biology of the eye lens membranes. Crit. Rev. Biochem. Mol. Biol., 24: 151–181.
  • Simonelli, F., Libondi, T., Romano, N., Nunziata, G., D’Aloia, A., and Rinaldi, E. (1996) Fatty acid composition of membrane phospholipids of cataractous human lenses. Ophthalmic Res., 28: S101–S104.
  • Sato, H., Borchman, D., Ozaki, Y., Lamba, O.P., Byrdwell, W.C., Yappert, M.C., and Paterson, C.A. (1996) Lipid–protein interactions in human and bovine lens membranes by Fourier transform Raman and infrared spectroscopies. Exp. Eye Res., 62: 47–53.
  • Thomas, D.M. and Schepler, K.L. (1980) Raman spectra of normal and ultraviolet-induced cataractous rabbit lens. Invest. Ophthalmol. Vis. Sci., 19: 904–912.
  • Takise, S., Horiguhi, S., Fukumura, H., Hayashi, K., Miki, T., Fukumoto, K., Yamashita, H., Yoshikawa, S., Karai, I., and Harima, M. (1980) Morphological change and Raman spectrum of rabbit lens irradiated with ultraviolet laser beam. Osaka City Med. J., 35: 29–37.
  • Barron, B.C., Yu, N.T., and Kuck, J.F., Jr. (1988) Raman spectroscopic evaluation of aging and long-wave UV exposure in the guinea pig lens: A possible model for human aging. Exp. Eye Res., 46: 249–258.
  • DeNagel, D.C., Bando, M., Yu, N.T., and Kuck, J.F., Jr. (1988) A Raman study of disulfide and sulfhydryl in the Emory mouse cataract. Invest. Ophthalmol. Vis. Sci., 29: 823–826.
  • Cai, M.Z., Kuck, J.F., Jr., and Yu, N.T. (1989) Galactose-induced cataract in rat: Raman detection of sulfhydryl decrease and water increase along an equatorial diameter. Exp. Eye Res., 49: 531–541.
  • Michael, R., Vrensen, G.F., van Marle, J., Löfgren, S., and Söderberg, P.G. (2000) Repair in the rat lens after threshold ultraviolet radiation injury. Invest. Ophthalmol. Vis. Sci., 41: 204–212.
  • Lin, S.Y., Lee, S.M., Cheng, C.L., and Liang, R.C. (1995) Effect of diabetic duration on the secondary structures of the human lens capsules in diabetic cataracts. Biochem. Biophys. Res. Commun., 216: 183–189.
  • Lee, S.M., Lin, S.Y., Cheng, C.L., and Liang, R.C. (1996) Progressive changes in secondary conformation and composition of the senile cataractous human lens capsules. Acta Ophthalmol. Scand., 74: 542–546.
  • Lee, S.M. and Lin, S.Y. (1997) Differentiation of the maturity of cataractous human lens capsules according to changes in protein secondary structures determined by Fourier-transformed infrared spectroscopy. Aust. N. Z. J. Ophthalmol., 25: 233–238.
  • Lee, S.M., Lin, S.Y., Cheng, C.L., and Liang, R.C. (1996) Possible changes in secondary structure and composition of human lens capsules in hereditary congenital cataract. Graefes Arch. Clin. Exp. Ophthalmol., 234: 342–348.
  • Lee, S.M., Lin, S.Y., Li, M.J., and Liang, R.C. (1997) Possible mechanism of exacerbating cataract formation in cataractous human lens capsules induced by systemic hypertension or glaucoma. Ophthalmic Res., 29: 83–90.
  • Lin, S.Y., Lee, S.M., Li, M.J., and Liang, R.C. (1997) Fourier transform infrared spectral evidences for protein conformational changes in immature cataractous human lens capsules accelerated by myopia and/or systemic hypertension. Spectrochim. Acta, Part A, 53: 1507–1513.
  • Borchman, D., Ozaki, Y., Lamba, O.P., Byrdwell, W.C., Czarnecki, M.A., and Yappert, M.C. (1995) Structural characterization of clear human lens lipid membranes by near-infrared Fourier transform Raman spectroscopy. Curr. Eye Res., 14: 511–515.
  • Lin, S.Y., Li, M.J., Liang, R.C., and Lee, S.M. (1998) Non-destructive analysis of the conformational changes in human lens lipid and protein structures of the immature cataracts associated with glaucoma. Spectrochim. Acta, Part A, 54: 1509–1517.
  • Lin, S.Y., Chen, K.H., Lin, C.C., Cheng, W.T., and Li, M.J. (2010) Spectral analysis and comparison of mineral deposits forming in opacified intraocular lens and senile cataractous lens. Spectrochim Acta, Part A, 77: 703–708.
  • Rey, C., Collins, B., Goehl, T., Dickson, I.R., and Glimcher, M.J. (1989) The carbonate environment in bone mineral: A resolution-enhanced Fourier transform infrared spectroscopy study. Calcif. Tissue Int., 45: 157–164.
  • Kerssens, M.M., Matousek, P., Rogers, K., and Stone, N. (2010) Towards a safe non-invasive method for evaluating the carbonate substitution levels of hydroxyapatite (HAP) in micro-calcifications found in breast tissue. Analyst, 135: 3156–3161.
  • Penel, G., Leroy, G., Rey, C., and Bres, E. (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif. Tissue Int., 63: 475–481.
  • Lin, S.Y., Chen, K.H., Li, M.J., Cheng, W.T., and Wang, S.L. (2004) Evidence of octacalcium phosphate and Type-B carbonated apatites deposited on the surface of explanted acrylic hydrogel intraocular lens. J. Biomed. Mater. Res. Part B, 70: 203–208.
  • Chen, C., Su, X., and Zhang, X. (1997) FTRaman and FTIR spectroscopy in lens with senile cataract. Chin. J. Ophthalmol., 33: 337–339.
  • Olsen, T.W., Aaberg, S.Y., Geroski, D.H., and Edelhauser, H.F. (1998) Human sclera: Thickness and surface area. Am. J. Ophthalmol., 125: 237–241.
  • Marshall, G.E., Konstas, A.G., and Lee, W.R. (1993) Collagens in the aged human macular sclera. Curr. Eye Res., 12: 143–153.
  • Rada, J.A., Achen, V.R., Penugonda, S., Schmidt, R.W., and Mount, B.A. (2000) Proteoglycan composition in the human sclera during growth and aging. Invest Ophthalmol Vis Sci., 41: 1639–1648.
  • Murthy, S.I. and Sangwan, V.S. (2004) Bilateral senile scleral plaques mimicking post-inflammatory scleral ectasia. Indian J. Ophthalmol., 52: 59–60.
  • Cogan, D.G. and Kuwabara, T. (1959) Focal senile translucency of the sclera. Arch Ophthalmol., 62: 94–100.
  • Manschot, W.A. (1978) Senile scleral plaques and senile scleromalacia. Br. J. Ophthalmol.376–380.
  • Shields, J.A. and Shields, C.L. (2002) CME review: sclerochoroidal calcification: The 2001 Harold Gifford Lecture. Retina, 22: 251–261.
  • Zhang, G., Boyle, D.L., Zhang, Y., Rogers, A.R., and Conrad, G.W. (2012) Development and mineralization of embryonic avian scleral ossicles. Mol Vis., 18: 348–361.
  • Alorainy, I. (2000) Senile scleral plaques: CT. Neuroradiology, 42: 145–148.
  • Cogan, D.G., Hurlbut, C.S., and Kuwabara, T. (1958) Crystalline calcium sulphate (gypsum) in scleral plaques of a human eye. J. Histochem. Cytochem., 6: 142–145.
  • Dehring, K.A., Smukler, A.R., Roessler, B.J., and Morris, M.D. (2006) Correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy. Appl. Spectros., 60: 366–372.
  • Jung, G.B., Lee, H.J., Kim, J.H., Lim, J.I., Choi, S., Jin, K.H., and Park, H.K. (2011) Effect of cross-linking with riboflavin and ultraviolet A on the chemical bonds and ultrastructure of human sclera. J. Biomed. Opt., 16: 125004.
  • Chen, K.H., Li, M.J., Cheng, W.T., Balic-Zunic, T., and Lin, S.Y. (2009) Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy. Int. J. Exp. Pathol., 90: 74–78.
  • Kim, M., Pian, D., and Ferrucci, S. (2004) Idiopathic sclerochoroidal calcification. Optometry, 75: 487–495.
  • Gupta, R., Hu, V., Reynolds, T., and Harrison, R. (2005) Sclerochoroidal calcification associated with Gitelman syndrome and calcium pyrophosphate dihydrate deposition. J. Clin. Pathol., 58: 1334–1335.
  • Bourcier, T., Blain, P., Massin, P., Grünfeld, J.P., and Gaudric, A. (1999) Sclerochoroidal calcification associated with Gitelman syndrome. Am. J. Ophthalmol., 128: 767–768.
  • Shields, J.A. (1997) Sclerochoroidal calcification in calcium pyrophosphate dihydrate deposition disease (pseudogout). Arch Ophthalmol., 115: 1077–1079.
  • Bishop, P.N. (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Progr. Retin. Eye Res., 19: 323–344.
  • Azhigalieva, M.N., Ul’danov, V.G., and Ushanov, V.Zh. (1989) A method of studying the vitreous body using Raman scatter laser spectroscopy. Vestn. Oftalmol., 105: 24–26.
  • Sebag, J., Nie, S., Reiser, K., Charles, M.A., and Yu, N.T. (1994) Raman spectroscopy of human vitreous in proliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 35: 2976–2980.
  • Sebag, J. (2002) Imaging vitreous. Eye, 16: 429–439.
  • Sebag, J. (2004) Seeing the invisible: The challenge of imaging vitreous. J. Biomed. Opt., 9: 38–46.
  • Sebag, J. (2008) To see the invisible: The quest of imaging vitreous. Dev Ophthalmol., 42: 5–28.
  • Feldman, G.L. (1967) Human ocular lipids: their analysis and distribution. Surv. Ophthalmol.207–243.
  • Topilow, H.W., Kenyon, K.R., Takahashi, M., Freeman, H.M., Tolentino, F.I., and Hanninen, L.A. (1982) Asteroid hyalosis. Biomicroscopy, ultrastructure, and composition. Arch Ophthalmol., 100: 964–968.
  • Streeten, B.W. (1982) Vitreous asteroid bodies. Ultrastructural characteristics and composition. Arch Ophthalmol., 100: 969–975.
  • Miller, H., Miller, B., Rabinowitz, H., Zonis, S., and Nir, I. (1983) Asteroid bodies—an ultrastructural study. Invest. Ophthalmol. Vis. Sci., 24: 133–136.
  • Winkler, J. and Lünsdorf, H. (2001) Ultrastructure and composition of asteroid bodies. Invest. Ophthalmol. Vis. Sci., 42: 902–907.
  • Komatsu, H., Kamura, Y., Ishi, K., and Kashima, Y. (2003) Fine structure and morphogenesis of asteroid hyalosis. Med. Electron. Microsc., 36: 112–119.
  • Kador, P.F. and Wyman, M. (2008) Asteroid hyalosis: Pathogenesis and prospects for prevention. Eye, 22: 1278–1285.
  • Schubert, H.D. (2009) Structure and function of the neural retina. In Ophthalmology. 3rd ed., Yanoff, M. and Duker, J.S., Eds. Saunders Elsevier: St. Louis, MO, chapter 6.1.
  • Booij, J.C., Baas, D.C., Beisekeeva, J., Gorgels, T.G., and Bergen, A.A. (2010) The dynamic nature of Bruch's membrane. Prog. Retin. Eye Res., 29: 1–18.
  • Jager, R.D., Mieler, W.F., and Miller, J.W. (2008) Age-related macular degeneration. N. Engl. J. Med., 358: 2606–2617.
  • Afshari, F.T. and Fawcett, J.W. (2009) Improving RPE adhesion to Bruch's membrane. Eye, 23: 1890–1893.
  • Abdelsalam, A., Del Priore, L., and Zarbin, M.A. (1999) Drusen in age-related macular degeneration: Pathogenesis, natural course, and laser photocoagulation-induced regression. Surv. Ophthalmol., 44: 1–29.
  • Zarbin, M.A. (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol., 122: 598–614.
  • Sun, K., Cai, H., Tezel, T.H., Paik, D., Gaillard, E.R., and Del Priore, L.V. (2007) Bruch's membrane aging decreases phagocytosis of outer segments by retinal pigment epithelium. Mol. Vis., 13: 2310–2319.
  • Glenn, J.V., Mahaffy, H., Wu, K., Smith, G., Nagai, R., Simpson, D.A., Boulton, M.E., and Stitt, A.W. (2009) Advanced glycation end product (AGE) accumulation on Bruch's membrane: Links to age-related RPE dysfunction. Invest. Ophthalmol. Vis. Sci., 50: 441–451.
  • Spraul, C.W., Lang, G.E., Grossniklaus, H.E., and Lang, G.K. (1999) Histologic and morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol., 44: S10–S32.
  • Erckens, R.J., Jongsma, F.H., Wicksted, J.P., Hendrikse, F., March, W.F., and Motamedi, M. (2001) Raman spectroscopy in ophthalmology: From experimental tool to applications in vivo. Lasers Med. Sci., 16: 236–252.
  • Massaro, S., Zlateva, T., Torre, V., and Quaroni, L. (2008) Detection of molecular processes in the intact retina by ATR-FTIR spectromicroscopy. Anal. Bioanal. Chem., 390: 317–322.
  • Elias, R.V., Sezate, S.S., Cao, W., and McGinnis, J.F. (2004) Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells. Mol. Vis., 10: 672–681.
  • Glenn, J.V., Beattie, J.R., Barrett, L., Frizzell, N., Thorpe, S.R., Boulton, M.E., McGarvey, J.J., and Stitt, A.W. (2007) Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch's membrane leading to accurate, nondestructive prediction of ocular aging. FASEB J., 21: 3542–3552.
  • Beattie, J.R., Pawlak, A.M., Boulton, M.E., Zhang, J., Monnier, V.M., McGarvey, J.J., and Stitt, A.W. (2010) Multiplex analysis of age-related protein and lipid modifications in human Bruch's membrane. FASEB J., 24: 4816–4824.
  • Nadim, F., Walid, H., and Adib, J. (2001) The differential diagnosis of crystals in the retina. Int. Ophthalmol., 24: 113–121.
  • Ekim, M., Yüksel, S., Fitöz, S., Ozmert, E., Acar, B., Ozçakar, Z.B., Güvence, N., Atalay, S., and Yalçinkaya, F. (2006) Systemic vascular calcification with retinal calcification in an adolescent treated with long-term peritoneal dialysis. Pediatr. Nephrol., 21: 1915–1916.
  • Habib, M.S., Byrne, S., McCarthy, J.H., and Steel, D.H. (2006) Refractile superficial retinal crystals and chronic retinal detachment: Case report. BMC Ophthalmol., 6: 3.
  • Fong, A.M., Koh, A., Lee, K., and Ang, C.L. (2009) Bietti's crystalline dystrophy in Asians: clinical, angiographic and electrophysiological characteristics. Int. Ophthalmol., 29: 459–470.
  • Gupta, B., Parvizi, S., and Mohamed, M.D. (2011) Bietti crystalline dystrophy and choroidal neovascularisation. Int. Ophthalmol., 31: 59–61.
  • Mares-Perlman, J.A., Millen, A.E., Ficek, T.L., and Hankinson, S.E. (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J. Nutr., 132: 518S–524S.
  • Krinsky, N.I., Landrum, J.T., and Bone, R.A. (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr., 23: 171–201.
  • Bernstein, P.S., Yoshida, M.D., Katz, N.B., McClane, R.W., and Gellermann, W. (1998) Raman detection of macular carotenoid pigments in intact human retina. Invest. Ophthalmol. Vis. Sci., 39: 2003–2011.
  • Neelam, K., O’Gorman, N., Nolan, J., O’Donovan, O., Wong, H.B., Au Eong, K.G., and Beatty, S. (2005) Measurement of macular pigment: Raman spectroscopy versus heterochromatic flicker photometry. Invest. Ophthalmol. Vis. Sci., 46: 1023–1032.
  • Zhao, D.Y., Wintch, S.W., Ermakov, I.V., Gellermann, W., and Bernstein, P.S. (2003) Resonance Raman measurement of macular carotenoids in retinal, choroidal, and macular dystrophies. Arch Ophthalmol., 121: 967–972.
  • Handelman, G.J., Snodderly, D.M., Adler, A.J., Russett, M.D., and Dratz, E.A. (1992) Measurement of carotenoids in human and monkey retinas. Methods Enzymol., 213: 220–230.
  • Bernstein, P.S., Zhao, D.Y., Wintch, S.W., Ermakov, I.V., McClane, R.W., and Gellermann, W. (2002) Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology, 109: 1780–1787.
  • Sharifzadeh, M., Zhao, D.Y., Bernstein, P.S., and Gellermann, W. (2008) Resonance Raman imaging of macular pigment distributions in the human retina. J. Opt. Soc. Am. A, 25: 947–957.
  • Wang, Q., Grozdanic, S.D., Harper, M.M., Hamouche, N., Kecova, H., Lazic, T., and Yu, C. (2011) Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes. J. Biomed. Opt., 16: 107006.
  • Bernauer, W., Thiel, M.A., Kurrer, M., Heiligenhaus, A., Rentsch, K.M., Schmitt, A., Heinz, C., and Yanar, A. (2006) Corneal calcification following intensified treatment with sodium hyaluronate artificial tears. Br. J. Ophthalmol., 90: 285–288.
  • Myrvang, H. (2011) An advance in preventing calcification in patients with dialysis-related hyperparathyroidism. Nat. Rev. Nephrol., 7: 123.
  • Curtis, T.M., Scholfield, C., and McGeown, D.J. (2007) Calcium signaling in ocular arterioles. Crit. Rev. Eukaryot. Gene Expr., 17: 1–12.
  • Caspers, P.J., Lucassen, G.W., Wolthuis, R., Bruining, H.A., and Puppels, G.J. (1998) In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy, 4: S31–S39.
  • Raina, U.K., Tuli, D., Arora, R., Mehta, D.K., and Taneja, M. (2000) Tubercular endophthalmitis simulating retinoblastoma. Am. J. Ophthalmol., 130: 843–845.
  • Goldenberg-Cohen, N., Bahar, I., Barash, D., Naphtalaiv, E., and Segev, Y. (2007) Sonographic features of senile scleral calcification. Ophthalmic Surg. Laser. Imag., 38: 115–117.
  • Chang, Y.C., Huang, C.C., and Liu, C.C. (1996) Frequency of linear hyperechogenicity over the basal ganglia in young infants with congenital rubella syndrome. Clin. Infect. Dis., 22, 569–571.
  • Besada, E., Barr, R., and Natu, A. (2005) Bilateral disk edema with unilateral macular serous fluid secondary to neurocysticercosis. Optometry, 76: 239–249.
  • Kalasinsky, K.S. and Kalasinsky, V.F. (2005) Infrared and Raman microspectroscopy of foreign materials in tissue specimens. Spectrochim. Acta, Part A, 61: 1707–1713.
  • Boskey, A.L. and Mendelsohn, R. (2005) Infrared spectroscopic characterization of mineralized tissues. Vib. Spectrosc., 38: 107–114.
  • McNaughton, D. (2005) Synchrotron infrared spectroscopy in biology and biochemistry. Aust. Biochem., 36: 55–58.
  • Dumas, P., Sockalingum, G.D., and Sulé-Suso, J. (2007) Adding synchrotron radiation to infrared microspectroscopy: What's new in biomedical applications ? Trends Biotechnol., 25: 40–44.
  • Petibois, C., Cestelli-Guidi, M., Piccinini, M., Moenner, M., and Marcelli, A. (2010) Synchrotron radiation FTIR imaging in minutes: A first step towards real-time cell imaging. Anal. Bioanal. Chem., 397: 2123–2129.
  • Marcelli, A., Cricenti, A., Kwiatek, W.M., and Petibois, C. (2012) Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnol. Adv., 30: 1390–1404.
  • Hirschmugl, C.J. and Gough, K.M. (2012) Fourier transform infrared spectrochemical imaging: Review of design and applications with a focal plane array and multiple beam synchrotron radiation source. Appl. Spectrosc., 66: 475–491.
  • Bellisola, G., and Sorio, C. (2012) Infrared spectroscopy and microscopy in cancer research and diagnosis. Am. J. Cancer Res., 2: 1–21.
  • Diem, M., Miljković, M., Bird, B., Chernenko, T., Schubert, J., Marcsisin, E.J., Mazur, A.I., Kingston, E., Zuser, E., Papamarkakis, K., and Laver, N. (2012) Applications of infrared and Raman micro-spectroscopy of cells in medical diagnostics: Present status and future promise. J. Spectrosc., 27: 463–496.
  • Duraipandian, S., Zheng, W., Ng, J., Low, J.J., Ilancheran, A., and Huang, Z. (2012) Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo. Anal. Chem., 84: 5913–5919.
  • Aamouche, A., Armenta, S., and Naubron, J.V. (2011) Vibrational spectroscopy: Structural analysis from molecules to nanomaterials. Int. J. Spectrosc., 2011: Art. No. 795694.
  • Kuo, M.T., Lin, C.C., Liu, H.Y., and Chang, H.C. (2011) Tear analytical model based on Raman microspectroscopy for investigation of infectious diseases of the ocular surface. Invest. Ophthalmol. Vis. Sci., 52: 4942–4950.
  • Borchman, D. and Yappert, M.C. (2010) Lipids and the ocular lens. J. Lipid Res., 51: 2473–2488.
  • Chen, P., Shen, A., Zhou, X., and Hu, J. (2011) Bio-Raman spectroscopy: A potential clinical analytical method assisting in disease diagnosis. Anal. Methods, 3: 1257–1269.
  • Rossi, E.E., Pinheiro, A.L., Baltatu, O.C., Pacheco, M.T., and Silveira, L., Jr. (2012) Differential diagnosis between experimental endophthalmitis and uveitis in vitreous with Raman spectroscopy and principal components analysis. J. Photochem. Photobiol., B, 107: 73–78.
  • UW Medical Center Radiology (2012) Soft tissue calcifications. Available at: http://www.rad.washington.edu/academics/academic-sections/msk/teaching-materials/online-musculoskeletal-radiology-book/soft-tissue-calcifications
  • Segre, L. (2013) Human eye anatomy: Parts of the eye. Available at: http://www.allaboutvision.com/resources/anatomy.htm
  • Miller, L. (2013) Anatomy & function of the eye. Available at: http://health.cat/open.php?url = http://www.refractec.com/Press/FINAL%20Anatomy%20Function%202005%203-9-06.pdf
  • Yan, X., Edward, D.P., and Mafee, M.F. (1998) Ocular calcification, radiologic-pathologic correlation and literature review. Int. J. Neuroradiol., 4: 81–96.
  • Som, P.M. and Curtin, H.D. (2003) Head and Neck Imaging, 4th ed. Mosby: St. Louis, MI.
  • Saket, R.R. and Mafee, M.F. (2009) Anterior-segment retinoblastoma mimicking pseudoinflammatory angle-closure glaucoma: Review of the literature and the important role of imaging. Am. J. Neuroradiol., 30: 1607–1609.
  • Schrage, N.F., Kompa, S., Ballmann, B., Reim, M., and Langefeld, S. (2005) Relationship of eye burns with calcifications of the cornea? Graefes Arch. Clin. Exp. Ophthalmol., 243: 780–784.
  • Kiratli, H., Irkeç, M., Alaçal, S., and Söylemezoğlu, F. (2006) Topical thrombin-related corneal calcification. Cornea., 25: 984–986.
  • Kompa, S., Redbrake, C., Dunkel, B., Weber, A., and Schrage, N. (2006) Corneal calcification after chemical eye burns caused by eye drops containing phosphate buffer. Burns., 32: 744–747.
  • Brandslund, I. and Damgaard, A.L. (2008) Corneal calcification after chemical eye burns caused by eye drops containing phosphate buffer. Burns., 34: 1215.
  • Abeysiri, P. and Sinha, A. (2006) An unusual pattern of corneal calcification in tertiary hyperparathyroidism. Arch. Ophthalmol., 124: 138–139.
  • Lake, D., Tarn, A., and Ayliffe, W. (2008) Deep corneal calcification associated with preservative-free eyedrops and persistent epithelial defects. Cornea., 27: 292–296.
  • Shankar, V., Roberts, F., and Ramaesh, K. (2010) Histopathological changes of cornea in long-term sympathetic ophthalmitis. Cornea., 29: 1287–1290.
  • Schrage, N.F., Schlossmacher, B., Aschenbernner, W., and Langefeld, S. (2001) Phosphate buffer in alkali eye burns as an inducer of experimental corneal calcification. Burns., 27: 459–464.
  • Hsiao, C.H., Chao, A., Chu, S.Y., Lin, K.K., Yeung, L., Lin-Tan, D.T., and Lin, J.L. (2011) Association of severity of conjunctival and corneal calcification with all-cause 1-year mortality in maintenance haemodialysis patients. Nephrol. Dial. Transplant, 26: 1016–1023.
  • Tarrass, F., Benjelloun, M., Benghanem, M.G., and Ramdani, B. (2006) Calcareous degeneration of the eye—an unusual complication of uraemic hyperparathyroidism. Nephrol. Dial. Transplant, 21: 3330.
  • Lange, C. (2011) Fluorometholone/hyaluronic acid: Corneal calcification following ophthalmic administration in an elderly patient: Case report. Reactions Weekly., 1361: 22.
  • Lee, D.K. and Eiferman, R.A. (2006) Ocular calcifications in primary hyperparathyroidism. Arch. Ophthalmol., 124: 136–137.
  • Surendrababu, N.R., Kuruvilla, K.A., Jana, A.K., and Cherian, R. (2006) Globe calcification in congenital toxoplasmosis. Indian J. Pediatr., 73: 527–528.
  • Chung, E.M., Specht, C.S., and Schroeder, J.W. (2007) From the archives of the AFIP: Pediatric orbit tumors and tumorlike lesions: Neuroepithelial lesions of the ocular globe and optic nerve. Radiographics., 27: 1159–1186.
  • Kadom, N. and Sze, R.W. (2008) Radiological reasoning: Leukocoria in a child. Am. J. Roentgenol., 191: S40–44.
  • Mansour, A.M. and Jaroudi, M.O. (2013) Hemorrhagic retinal macrocysts, simulating choroidal melanoma: A case report. Clin. Ophthalmol., 7: 973–976.
  • Coutts, S.J. and El-kasaby, H.T. (2011) Scleral calcification. Emerg. Med. J., 28: 1060.
  • Gossner, J. and Larsen, J. (2009) Calcified senile scleral plaques. J. Neuroradiol., 36: 119–120.
  • Zhang, G., Boyle, D.L., Zhang, Y., Rogers, A.R., and Conrad, G.W. (2012) Development and mineralization of embryonic avian scleral ossicles. Mol. Vis., 18: 348–361.
  • Kimura, M., Ogata, N., Shima, C., and Takahashi, K. (2012) Choroidal melanoma with massive extraocular extensions through sclera. Clin. Ophthalmol., 6: 2081–2084.
  • Chen, K.H., Li, M.J., Cheng, W.T., Balic-Zunic, T., and Lin, S.Y. (2009) Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy. Int. J. Exp. Pathol., 90: 74–78.
  • Hara, K., Tanito, M., Kodama, T., and Ohira, A. (2013) A case of chorioretinal atrophy due to sclerochoroidal calcification. Acta Ophthalmol., 91: e167–168.
  • Shah, P.K., Narendran, V., Manayath, G.J., and Chowdhary, S. (2011) Atypical retinocytoma with diffuse vitreous seeds: An insight. Oman J. Ophthalmol., 4: 81–83.
  • Wikipedia. (2013) Raman spectroscopy. Available at: http://en.wikipedia.org/wiki/Raman_spectroscopy
  • Mizuno, A., Toshima, S., and Mori, Y. (1990) Confirmation of lens hydration by Raman spectroscopy. Exp. Eye Res., 50: 647–649.
  • Toshima, S., Miyazaki, H., and Mizuno, A. (1990) Raman study of the lenses of spontaneously-occurring and streptozotocin-induced diabetic rats. Jpn. J. Ophthalmol., 34: 436–441.
  • Nie, S.M., Bergbauer, K.L., Kuck, J.F. Jr., and Yu, N.T. (1990) Near-infrared Fourier transform Raman spectroscopy in human lens research. Exp. Eye Res., 51: 619–623.
  • Schyns, M.W., Huizinga, A., Vrensen, G.F., de Mul, F.F., and Greve, J. (1990) Paraformaldehyde fixation and some characteristics of lens proteins as measured by Raman microspectroscopy. Exp. Eye Res., 50: 331–333.
  • Sokolov, K.V., Lutsenko, S.V., Nabiev, I.R., Nie, S.M. and Yu, N.T. (1991) Surface-enhanced Raman analysis of biomedical eye lens extracts. Appl. Spectro., 45: 1143–1148.
  • Chen, W.L., Nie, S.M., Kuck, J.F. Jr., and Yu, N.T. (1991) Near-infrared Fourier transform Raman and conventional Raman studies of calf gamma-crystallins in the lyophilized state and in solution. Biophys. J., 60: 447–455.
  • Pande, J., McDermott, M.J., Callender, R.H., and Spector, A. (1991) The calf gamma crystallins—A Raman spectroscopic study. Exp. Eye Res., 52: 193–197.
  • Yu, N.T., Cai, M.Z., Lee, B.S., Kuck, J.F. Jr., McFall-Ngai, M., and Horwitz, J. (1991) Resonance Raman detection of a carotenoid in the lens of the deep-sea hatchetfish. Exp. Eye Res., 52: 475–479.
  • Barańska, H., and Labudzińska, A. (1991) Study of NH stretching band in Raman spectra of animal lenses. Lens Eye Toxic Res., 8: 189–194.
  • Borchman, D., Yappert, M.C., and Herrell, P. (1991) Structural characterization of human lens membrane lipid by infrared spectroscopy. Invest. Ophthalmol. Vis. Sci., 32: 2404–2416.
  • Borchman, D., Lamba, O.P., and Ozaki, Y., and Czarnecki, M. (1993) Raman structural characterization of clear human lens lipid membranes. Curr. Eye Res., 12: 279–284.
  • Chiou, S.H., and Chen, W. (1992) Structural analysis of pigeon lens crystallins by near-infrared Fourier transform Raman spectroscopy. Biochem. Int., 28: 401–412.
  • Castillo, C.G., Lo, W.K., Kuck, J.F., and Yu, N.T. (1992) Nature and localization of avian lens glycogen by electron microscopy and Raman spectroscopy. Biophys. J., 61: 839–844.
  • Ozaki, Y. and Mizuno, A. (1992) Molecular aging of lens crystallins and the life expectancy of the animal. Age-related protein structural changes studied in situ by Raman spectroscopy. Biochim. Biophys. Acta. 1121: 245–251.
  • Lamba, O.P., Borchman, D., and Garner, W.H. (1993) Infrared study of the structure and composition of rabbit lens membranes: A comparative analysis of the lipids of the nucleus, cortex and epithelium. Exp. Eye Res., 57: 1–12.
  • Yaroslavsky, I.V., Yaroslavsky, A.N., Otto, C., Puppels, G.J., Vrensen, G.F., Duindam, H., and Greve, J. (1994) Combined elastic and Raman light scattering of human eye lenses. Exp. Eye Res., 59: 393–399.
  • Vrensen, G.F.J.M., and Duindam, H.J. (1995) Maturation of fiber membranes in the human eye lens: Ultrastructural and Raman microspectroscopic observations. Ophthal. Res., 27 (S1): 78–85.
  • Tomohiro, M. and Mizuno, A. (1995) Alteration of lens sulfhydryl groups induced by oxidative stress: Raman spectroscopic study of hydrogen peroxide-treated rat lens. Jpn. J. Ophthalmol., 39: 130–136.
  • Duindam, H.J., Vrensen, G.F., Otto, C., Puppels, G.J., and Greve, J. (1995) New approach to assess the cholesterol distribution in the eye lens: Confocal Raman microspectroscopy and filipin cytochemistry. J. Lipid Res., 36: 1139–1146.
  • Nakamura, K., Jung, Y.M., Era, S., Sogami, M., Ozaki, Y., and Takasaki, A. (2000) 1H-NMR and Raman studies on perforating trauma-induced cataract formation in a mouse lens. Biochim. Biophys. Acta., 1474: 23–30.
  • Medina-Gutiérrez, C., Frausto-Reyes, C., Quintanar-Stephano, J.L., Sato-Berrú, R., and Barbosa-García, O. (2004) Study of the protein distribution in the pig lens cross section by Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 60: 1573–1577.
  • Aly, E.M. and Mohamed, E.S. (2011) Effect of infrared radiation on the lens. Indian J. Ophthalmol., 59: 97–101.
  • Siew, D.C.W., Clover, G.M., Cooney, R.P., and Wiggins, P.M. (1995) Micro-Raman spectroscopic study of organ cultured corneae. J. Raman Spectro., 26: 3–8.
  • Jongsma, F.H.M., Erckens, R.J., Wicksted, J.P., Bauer, N.J.C., Hendrikse, F., March, W.F., and Motamedi, M. (1997) Confocal Raman spectroscopy system for noncontact scanning of ocular tissues: An in vitro study. Opt. Eng., 36: 3193–3199.
  • March, W.F. and Bauer, N.J. (2001) Non-invasive measurement of corneal hydration. J. Refract. Surg., 17 (S2): S205–210.
  • Xiao, Y., Guo, M., Zhang, P., Shanmugam, G., Polavarapu, P.L., and Hutson, M.S. (2008) Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea. Biophys. J., 94: 1359–1366.
  • Masters, B.R. (2009) Correlation of histology and linear and nonlinear microscopy of the living human cornea. J. Biophotonics., 2: 127–139.
  • Zhang, L. and Aksan, A. (2010) Fourier transform infrared analysis of the thermal modification of human cornea tissue during conductive keratoplasty. Appl. Spectrosc., 64: 23–29.
  • Masic, A., Bertinetti, L., Schuetz, R., Galvis, L., Timofeeva, N., Dunlop, J.W., Seto, J., Hartmann, M.A., and Fratzl, P. (2011) Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy. Biomacromolecules., 12: 3989–3996.
  • Filik, J. and Stone, N. (2008) Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta., 616: 177–184.
  • Reyes-Goddard, J.M., Barr, H., and Stone, N. (2008) Surface enhanced Raman scattering of herpes simplex virus in tear film. Photodiag. Photodyn. Ther., 5: 42–49.
  • Filik, J. and Stone, N. (2009) Investigation into the protein composition of human tear fluid using centrifugal filters and drop coating deposition Raman spectroscopy. J. Raman Spectro., 40: 218–224.
  • Kuo, M.T., Lin, C.C., Liu, H.Y., Yang, M.Y., and Chang, H.C. (2012) Differentiation between infectious and noninfectious ulcerative keratitis by Raman spectra of human teardrops: A pilot study. Invest. Ophthalmol. Vis. Sci., 53: 1436–1444.
  • Wicksted, J.P., Erckens, R.J., Motamedi, M., and March. W.F. (1995) Raman spectroscopy studies of metabolic concentrations in aqueous solutions and aqueous humor specimens. Appl. Spectro., 49: 987–993.
  • Erckens, R.J., Motamedi, M., March, W.F., and Wicksted, J.P. (1997) Raman spectroscopy for non-invasive characterization of ocular tissue: Potential for detection of biological molecules. J. Raman Spectro., 28: 293–299.
  • Bauer, N.J., Motamedi, M., Hendrikse, F., and Wicksted, J.P. (2005) Remote temperature monitoring in ocular tissue using confocal Raman spectroscopy. J. Biomed. Opt., 10: 031109.
  • Lambert, J.L., Pelletier, C.C., and Borchert, M. (2005) Glucose determination in human aqueous humor with Raman spectroscopy. J. Biomed. Opt., 10: 031110.
  • Pelletier, C.C., Lambert, J.L., and Borchert, M. (2005) Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration. Appl. Spectrosc., 59: 1024–1031.
  • Sideroudi, T.I., Pharmakakis, N.M., Papatheodorou, G.N., and Voyiatzis, G.A. (2006) Non-invasive detection of antibiotics and physiological substances in the aqueous humor by Raman spectroscopy. Lasers Surg. Med., 38: 695–703.
  • Steffes, P.G. (1999) Laser-based measurement of glucose in the ocular aqueous humor: An efficacious portal for determination of serum glucose levels. Diabetes Technol. Ther., 1: 129–133.
  • Lambert, J.L., Morookian, J.M., Sirk, S.J., and Borchert, M.S. (2002) Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy. J. Raman Spectro., 33: 524–529.
  • Yuzhakov, A.V., Sviridov, A.P., Baum, O.I., Shcherbakov, E.M., and Sobol, E.N. (2013) Optical characteristics of the cornea and sclera and their alterations under the effect of nondestructive 1.56-μm laser radiation. J. Biomed. Opt., 18: 058003.
  • Beattie, J.R., Pawlak, A.M., McGarvey, J.J., and Stitt, A.W. (2011) Sclera as a surrogate marker for determining AGE-modifications in Bruch's membrane using a Raman spectroscopy-based index of aging. Invest. Ophthalmol. Vis. Sci., 52: 1593–1598.
  • Bashkatov, A.N., Genina, E.A., Kochubey, V.I., and Tuchin, V.V. (2010) Optical properties of human sclera in spectral range 370–2500 nm. Opt. Spectro., 109: 197–204.
  • Nie, S., Castillo, C.G., Bergbauer, K.L., Kuck, J.F.R., Nabiev, I.R., and Yu, N.T. (1990) Surface-enhanced Raman spectra of eye lens pigments. Appl. Spectro., 44: 571–575.
  • LeVine, S.M., Radel, J.D., Sweat, J.A., and Wetzel, D.L. (1999) Microchemical analysis of retina layers in pigmented and albino rats by Fourier transform infrared microspectroscopy. Biochim. Biophys. Acta., 1473: 409–417.
  • Gellermann, W. and Bernstein, P.S. (2004) Noninvasive detection of macular pigments in the human eye. J. Biomed. Opt., 9: 75–85.
  • Ermakov, I.V., Ermakova, M.R., and Gellermann, W. (2005) Simple Raman instrument for in vivo detection of macular pigments. Appl. Spectrosc., 59: 861–867.
  • Hammond, B.R. and Wooten, B.R. (2006) Comments on the use of Raman spectroscopy for the in vivo measurement of human macular pigment. Appl. Spectrosc., 60: 1348–1349.
  • Bhosale, P., Serban, B., Zhao, D.Y., and Bernstein, P.S. (2007) Identification and metabolic transformations of carotenoids in ocular tissues of the Japanese quail Coturnix japonica. Biochemistry., 46: 9050–9057.
  • Ayman, A., Talaat, M.S., Negm, S., and Talaat, H. (2008) Investigation of biophysical characteristics of diabetic living eye tissues using PA-FTIR-spectroscopy. Eur. Phys. J. Special Topics, 153: 497–501.
  • Pawlak, A.M., Glenn, J.V., Beattie, J.R., McGarvey, J.J., and Stitt, A.W. (2008) Advanced glycation as a basis for understanding retinal aging and noninvasive risk prediction. Ann. N. Y. Acad. Sci., 1126: 59–65.
  • Pawlak, A.M., Beattie, J.R., Glenn, J.V., Stitt, A.W., and McGarvey, J.J. (2008) Raman spectroscopy of advanced glycation end products (AGEs), possible markers for progressive retinal dysfunction. J. Raman Spectro., 39: 1635–1642.
  • Evans, J.W., Zawadzki, R.J., Liu, R., Chan, J.W., Lane, S.M., and Werner, J.S. (2009) Optical coherence tomography and Raman spectroscopy of the ex vivo retina. J. Biophotonics., 2: 398–406.
  • Terada, N., Ohno, N., Saitoh, S., Fujii, Y., Ohguro, H., and Ohno, S. (2007) Raman microscopy of freeze-dried mouse eyeball-slice in conjunction with the in vivo cryotechnique. Microsc. Res. Tech., 70: 634–639.
  • Chen, K.H., Lin, S.Y., Li, M.J., and Cheng, W.T. (2005) Retained antibiotic ophthalmic ointment on an intraocular lens 34 months after sutureless cataract surgery. Am. J. Ophthalmol., 139: 743–745.
  • Katz, A., Kruger, E.F., Minko, G., Liu, C.H., Rosen, R.B., and Alfano, R.R. (2003) Detection of glutamate in the eye by Raman spectroscopy. J. Biomed. Opt., 8: 167–172.
  • Nie, S., Yu, N.T., and Ren, Q. (1992) Near-IR Fourier transform Raman spectroscopy in surgery and medicine: Ophthalmic applications. Proc. SPIE., 1644: 276–281.
  • Shairfzadeh, M., Zhao, D.Y., Bernstein, P.S., and Gellermann, W. (2008) Resonance Raman imaging of macular pigment distributions in the human retina. J .Opt. Soc. Am. A Opt. Image Sci. Vis., 25: 947–957.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.