5,972
Views
513
CrossRef citations to date
0
Altmetric
Review

The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties

, , , &

References

  • Saxton, K.E., Rawls, W.J., Romberger, J.S., and Papendick, R.I. (1986) Estimating generalized soil–water characteristics from texture. Soil Sci. Soc. Am. J., 50: 1031–1036.
  • Minasny, B., McBratney, A.B., and Bristow, K.L. (1999) Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 93: 225–253.
  • Janik, L.J., Merry, R.H., and Skjemstad, J.O. (1998) Can mid infrared diffuse reflectance analysis replace soil extractions? Aust. J. Exp. Agric., 38: 681–696.
  • Viscarra Rossel, R.A., Adamchuk, V.I., Sudduth, K.A., McKenzie, N.J., and Lobsey, C. (2011) Proximal soil sensing. An effective approach for soil measurements in space and time. Adv. Agron., 113: 237–282.
  • Malley, D.F., Martin, P.D., and Ben-Dor, E. (2004) Application in analysis of soils. In Near-Infrared Spectroscopy in Agriculture, Agronomy 44. Roberts, C.A., Workman, J., Jr., and Reeves, J.B., III, Eds. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, pp. 729–784.
  • Cécillon, L., Barthès, B.G., Gomez, C., Ertlen, D., Genot, V., Hedde, M., Stevens, A., and Brun, J.J. (2009) Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). Eur. J. Soil Sci., 60: 770–784.
  • Nduwamungu, C., Ziadi, N., Tremblay, G.F., Parent, L. É., Tremblay, G.F., and Thuriès, B. (2009) Near-infrared reflectance spectroscopy prediction of soil properties: Effects of sample cups and preparation. Soil Sci. Soc. Am. J., 73: 1896–1903.
  • Stenberg, B., Viscarra Rossel, R.A., Mouazen, A.M., and Wetterlind, J. (2010) Visible and near infrared spectroscopy in soil science. Adv. Agron., 107: 163–215.
  • Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.M., and McBratney, A. (2010) Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. Trends Anal. Chem., 29: 1073–1081.
  • Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., and Skjemstad, J.O. (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131: 59–75.
  • Stenberg, B. and Viscarra-Rossel, R.A. (2010) Diffuse reflectance spectroscopy for high-resolution soil sensing. In Proximal Soil Sensing, Progress in Soil Science 1, Viscarra-Rossel, R.A., Ed. Springer Science+Business Media: New York, pp. 29–47.
  • Bellon-Maurel, V. and McBratney, A. (2011) Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—Critical review and research perspectives. Soil Biol. Biochem., 43: 1398–1410.
  • Reeves, J.B., III. (2010) Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma, 158: 3–14.
  • Du, C. and Zhou, J. (2009) Evaluation of soil fertility using infrared spectroscopy: A review. Environ. Chem. Lett., 7: 97–113.
  • Kuang, B., Mahmood, H.S., Quraishi, M.Z., Hoogmoed, W.B., Mouazen, A.M., and van Henten, E.J. (2012) Sensing soil properties in the laboratory, in situ, and on-line. A review. Adv. Agron., 114: 155–223.
  • Nguyen, T.T., Janik, L.J., and Raupach, M. (1991) Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies. Aust. J. Soil Res., 29: 49–67.
  • Reeves, J.B., III, McCarty, G.W., and Meisinger, J.J. (1999) Near infrared reflectance spectroscopy for the analysis of agricultural soils. J. Near Infrared Spectrosc., 7: 179–193.
  • Viscarra Rossel, R.A., Chappell, A., De Caritat, P., and Mckenzie, N.J. (2011) On the soil information content of visible–near infrared reflectance spectra. Eur. J. Soil Sci., 62: 442–453.
  • Joffre, R., Ågren, G.I., Gillon, D., and Bosatta, E. (2001) Organic matter quality in ecological studies: Theory meets experiment. Oikos, 93: 451–458.
  • Cohen, M.J., Prenger, J.P., and DeBusk, W.F. (2005) Visible–near infrared reflectance spectroscopy for rapid, nondestructive assessment of wetland soil quality. J. Environ. Qual., 34: 1422–1434.
  • Velasquez, E., Lavelle, P., Barrios, E., Joffre, R., and Reversat, F. (2005) Evaluating soil quality in tropical agroecosystems of Colombia using NIRS. Soil Biol. Biochem., 37: 889–898.
  • Vågen, T.G., Shepherd, K.D., and Walsh, M.G. (2006) Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of Madagascar using Vis-NIR spectroscopy. Geoderma, 133: 281–294.
  • Omuto, C.T. (2008) Assessment of soil physical degradation in eastern Kenya by use of a sequential soil testing protocol. Agric. Ecosyst. Environ., 128: 199–211.
  • Viscarra Rossel, R.A. (2011) Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra. J. Geophys. Res. F: Earth Surf., 116.
  • Viscarra Rossel, R.A. and Chen, C. (2011) Digitally mapping the information content of visible–near infrared spectra of surficial Australian soils. Remote Sens. Environ., 115: 1443–1455.
  • Viscarra Rossel, R.A. and Webster, R. (2011) Discrimination of Australian soil horizons and classes from their visible–near infrared spectra. Eur. J. Soil Sci., 62: 637–647.
  • Forouzangohar, M., Cozzolino, D., Smernik, R.J., Baldock, J.A., Forrester, S.T., Chittleborough, D.J., and Kookana, R.S. (2013) Using the power of C-13 NMR to interpret infrared spectra of soil organic matter: A two-dimensional correlation spectroscopy approach. Vib. Spectrosc., 66: 76–82.
  • Viscarra Rossel, R.A., Rizzo, R., Demattê, J.A.M., and Behrens, T. (2010) Spatial modeling of a soil fertility index using visible–near-infrared spectra and terrain attributes. Soil Sci. Soc. Am. J., 74: 1293–1300.
  • Van der Marel, H.W. and Beutelspacher, H. (1976) Clay and related minerals. In Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures, Van der Marel, H.W. and Beutelspacher, H., Eds. Elsevier Scientific: Amsterdam, The Netherlands, p. 396.
  • Coates, J. (2000) Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry, Meyers, R.A., Ed. Wiley & Sons Ltd.: Chichester, UK, pp. 10815–10837.
  • Viscarra-Rossel, R.A. and Behrens, T. (2010) Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158: 46–54.
  • Sherman, D.M. and Waite, T.D. (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am. Mineral., 70: 1262–1269.
  • Reeves, J.B., III, McCarty, G.W., and Reeves, V.B. (2001) Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. J. Agric. Food Chem., 49: 766–772.
  • Grinand, C., Barthès, B.G., Brunet, D., Kouakoua, E., Arrouays, D., Jolivet, C., Caria, G., and Bernoux, M. (2012) Prediction of soil organic and inorganic carbon contents at a national scale (France) using mid-infrared reflectance spectroscopy (MIRS). Eur. J. Soil Sci., 63: 141–151.
  • Janik, L.J., Skjemstad, J.O., Shepherd, K.D., and Spouncer, L.R. (2007) The prediction of soil carbon fractions using mid-infrared–partial least square analysis. Aust. J. Soil Res., 45: 73–81.
  • Dardenne, P., Sinnaeve, G., and Baeten, V. (2000) Multivariate calibration and chemometrics for near infrared spectroscopy: Which method? J. Near Infrared Spectrosc., 8: 229–237.
  • Brown, D.J., Bricklemyer, R.S., and Miller, P.R. (2005) Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana. Geoderma, 129: 251–267.
  • Varmuza, K. and Filmoser, P. (2009) Introduction to Multivariate Statistical Analysis in Chemometrics. Taylor & Francis: Boca Raton, FL.
  • Shepherd, K.D. and Walsh, M.G. (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J., 66: 988–998.
  • Viscarra Rossel, R.A., Jeon, Y.S., Odeh, I.O.A., and McBratney, A.B. (2008) Using a legacy soil sample to develop a mid-IR spectral library. Aust. J. Soil Res., 46: 1–16.
  • Brown, D.J., Shepherd, K.D., Walsh, M.G., Dewayne Mays, M., and Reinsch, T.G. (2006) Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132: 273–290.
  • Udelhoven, T., Emmerling, C., and Jarmer, T. (2003) Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil, 251: 319–329.
  • Viscarra Rossel, R.A. and Webster, R. (2012) Predicting soil properties from the Australian soil visible–near infrared spectroscopic database. Eur. J. Soil Sci., 63: 848–860.
  • Naes, T., Isaksson, T., and Kowalski, B. (1990) Locally weighted regression and scatter correction for near-infrared reflectance data. Anal. Chem., 62: 664–673.
  • Shenk, J.S., Westerhaus, M.O., and Berzaghi, P. (1997) Investigation of a LOCAL calibration procedure for near infrared instruments. J. Near Infrared Spectrosc., 5: 223–232.
  • Kennard, R.W. and Stone, L.A. (1969) Computer aided design of experiments. Technometrics, 11: 137–148.
  • Ramirez-Lopez, L., Behrens, T., Schmidt, K., Rossel, R.A.V., Demattê, J.A.M., and Scholten, T. (2013) Distance and similarity-search metrics for use with soil Vis-NIR spectra. Geoderma, 199: 43–53.
  • Reeves, J.B., McCarty, G.W., and Hively, W.D. (2010) Mid-versus near-infrared spectroscopy for on-site analysis of soil. In Proximal Soil Sensing, Viscarra-Rossel, R.A., McBratney, A.B., and Minasny, B., Eds. Springer Science+Business Media: New York, pp. 133–142.
  • Conyers, M.K., Poile, G.J., Oates, A.A., Waters, D., and Chan, K.Y. (2011) Comparison of three carbon determination methods on naturally occurring substrates and the implication for the quantification of “soil carbon.” Soil Res., 49: 27–33.
  • Hammes, K., Schmidt, M.W.I., Smernik, R.J., Currie, L.A., Ball, W.P., Nguyen, T.H., Louchouarn, P., Houel, S., Gustafsson, Ö, Elmquist, M., Cornelissen, G., Skjemstad, J.O., Masiello, C.A., Song, J., Peng, P., Mitra, S., Dunn, J.C., Hatcher, P.G., Hockaday, W.C., Smith, D.M., Hartkopf-Fröder, C., Böhmer, A., Lüer, B., Huebert, B.J., Amelung, W., Brodowski, S., Huang, L., Zhang, W., Gschwend, P.M., Flores-Cervantes, D.X., Largeau, C., Rouzaud, J., Rumpel, C., Guggenberger, G., Kaiser, K., Rodionov, A., Gonzalez-Vila, F.J., Gonzalez-Perez, J.S., de la Rosa, J.M., Manning, D.A.C., López-Capél, E., and Ding, L. (2007) Comparison of quantification methods to measure fire-derived (black-elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem. Cycles, 21:
  • Davies, B.E. (1971) A statistical comparison of pH values of some English soils after measurement in both water and 0.01M calcium chloride. Soil Sci. Soc. Am. J., 35: 551–552.
  • Bowman, G. and Hutka, J. (2002) Particle size analysis. In Soil Physical Measurement and Interpretation for Land Evaluation, McKenzie, N., Coughlan, K., and Cresswell, H., Eds. CSIRO Publishing: Collingwood, Australia, pp. 224–239.
  • Viscarra Rossel, R.A., Fouad, Y., and Walter, C. (2008) Using a digital camera to measure soil organic carbon and iron contents. Biosyst. Eng., 100: 149–159.
  • Stumpe, B., Weihermüller, L., and Marschner, B. (2011) Sample preparation and selection for qualitative and quantitative analyses of soil organic carbon with mid-infrared reflectance spectroscopy. Eur. J. Soil Sci., 62: 849–862.
  • Chang, C.W., Laird, D.A., and Hurburgh, C.R., Jr. (2005) Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties. Soil Sci., 170: 244–255.
  • Viscarra Rossel, R.A., Cattle, S.R., Ortega, A., and Fouad, Y. (2009) In situ measurements of soil colour, mineral composition and clay content by Vis-NIR spectroscopy. Geoderma, 150: 253–266.
  • Stenberg, B. (2010) Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma, 158: 15–22.
  • Tekin, Y., Tumsavas, Z., and Mouazen, A.M. (2012) Effect of moisture content on prediction of organic carbon and pH using visible and near-infrared spectroscopy. Soil Sci. Soc. Am. J., 76: 188–198.
  • Jahn, B.R., Linker, R., Upadhyaya, S.K., Shaviv, A., Slaughter, D.C., and Shmulevich, I. (2006) Mid-infrared spectroscopic determination of soil nitrate content. Biosyst. Eng., 94: 505–515.
  • Linker, R., Weiner, M., Shmulevich, I., and Shaviv, A. (2006) Nitrate determination in soil pastes using attenuated total reflectance mid-infrared spectroscopy: Improved accuracy via soil identification. Biosyst. Eng., 94: 111–118.
  • D’Acqui, L.P., Churchman, G.J., Janik, L.J., Ristori, G.G., and Weissmann, D.A. (1999) Effect of organic matter removal by low-temperature ashing on dispersion of undisturbed aggregates from a tropical crusting soil. Geoderma, 93: 311–324.
  • Churchman, G.J., Foster, R.C., D’Acqui, L.P., Janik, L.J., Skjemstad, J.O., Merry, R.H., and Weissmann, D.A. (2010) Effect of land-use history on the potential for carbon sequestration in an Alfisol. Soil Tillage Res., 109: 23–35.
  • Savitzky, A. and Golay, M.J.E. (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36: 1627–1639.
  • Pichevin, L., Bertrand, P., Boussafir, M., and Disnar, J.R. (2004) Organic matter accumulation and preservation controls in a deep sea modern environment: An example from Namibian slope sediments. Org. Geochem., 35: 543–559.
  • Ibrahim, M., Hameed, A.J., and Jalbout, A. (2008) Molecular spectroscopic study of River Nile sediment in the greater Cairo region. Appl. Spectrosc., 62: 306–311.
  • Griffiths, P.R. and Fuller, M.P. (1982) Mid-infrared spectrometry of powdered samples. In Advances in Infrared and Raman Spectroscopy, Vol. 9, Clark, R.J.H. and Hester, R.E., Eds. Heyden: London, pp. 63–129.
  • Bishop, J.L., Murchie, S.L., Pieters, C.M., and Zent, A.P. (2002) A model for formation of dust, soil, and rock coatings on Mars: Physical and chemical processes on the Martian surface. J.Geophys. Res. E: Planets, 107: 7-1–7-17.
  • Haaland, D.M. and Thomas, E.V. (1988) Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem., 60: 1193–1202.
  • Minasny, B. and McBratney, A.B. (2008) Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy. Chemom. Intell. Lab. Syst., 94: 72–79.
  • Viscarra Rossel, R.A. and Lark, R.M. (2009) Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. Eur. J. Soil Sci., 60: 453–464.
  • Janik, L.J., Forrester, S.T., and Rawson, A. (2009) The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemom. Intell. Lab. Syst.179–188.
  • Chakraborty, S., Weindorf, D.C., Zhu, Y., Li, B., Morgan, C.L.S., Ge, Y., and Galbraith, J. (2012) Spectral reflectance variability from soil physicochemical properties in oil contaminated soils. Geoderma, 177–178: 80–89.
  • Williams, P.C. (1987) Variables affecting near-infrared reflectance spectroscopy. In Near-Infrared Technology in the Agricultural and Food Industries, 1st ed., Williams, P.C. and Norris, K.H., Eds. American Association of Cereal Chemists: St Paul, MN, pp. 143–167.
  • Reeves, J.B., III, and Smith, D.B. (2009) The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America. Appl. Geochem., 24: 1472–1481.
  • Shenk, J.S. and Westerhaus, M.O. (1991) New standardisation and calibration procedures for NIRS analytical systems. Crop Sci., 31: 1694–1696.
  • Fearn, T. (2001) Standardisation and calibration transfer for near infrared instruments: A review. J. Near Infrared Spectrosc., 9: 229–244.
  • Andrew, A. and Fearn, T. (2004) Transfer by orthogonal projection: Making near-infrared calibrations robust to between-instrument variation. Chemom. Intell. Lab. Syst., 72: 51–56.
  • Bogrekci, I. and Lee, W.S. (2007) Comparison of ultraviolet, visible, and near infrared sensing for soil phosphorus. Biosyst. Eng., 96: 293–299.
  • Nocita, M., Kooistra, L., Bachmann, M., Müller, A., Powell, M., and Weel, S. (2011) Predictions of soil surface and topsoil organic carbon content through the use of laboratory and field spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa. Geoderma, 167–168: 295–302.
  • Ludwig, B., Nitschke, R., Terhoeven-Urselmans, T., Michel, K., and Flessa, H. (2008) Use of mid-infrared spectroscopy in the diffuse-reflectance mode for the prediction of the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci., 171: 384–391.
  • D’Acqui, L.P., Pucci, A., and Janik, L.J. (2010) Soil properties prediction of western Mediterranean islands with similar climatic environments by means of mid-infrared diffuse reflectance spectroscopy. Eur. J. Soil Sci., 61: 865–876.
  • Shao, Y. and He, Y. (2011) Nitrogen, phosphorus, and potassium prediction in soils, using infrared spectroscopy. Soil Res., 49: 166–172.
  • Daniel, K.W., Tripathi, N.K., and Honda, K. (2003) Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Aust. J. Soil Res., 41: 47–59.
  • Mouazen, A.M., De Baerdemaeker, J., and Ramon, H. (2005) Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil Tillage Res., 80: 171–183.
  • Waiser, T.H., Morgan, C.L.S., Brown, D.J., and Hallmark, C.T. (2007) In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Sci. Soc. Am. J., 71: 389–396.
  • Ben-Dor, E., Heller, D., and Chudnovsky, A. (2008) A novel method of classifying soil profiles in the field using optical means. Soil Sci. Soc. Am. J., 72: 1113–1123.
  • Christy, C.D. (2008) Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Comput. Electron. Agric., 61: 10–19.
  • Gomez, C., Viscarra Rossel, R.A., and McBratney, A.B. (2008) Soil organic carbon prediction by hyperspectral remote sensing and field Vis-NIR spectroscopy: An Australian case study. Geoderma, 146: 403–411.
  • Stevens, A., van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B., and Ben-Dor, E. (2008) Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma, 144: 395–404.
  • Mouazen, A.M., Maleki, M.R., Cockx, L., Van Meirvenne, M., Van Holm, L.H.J., Merckx, R., De Baerdemaeker, J., and Ramon, H. (2009) Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy of soil phosphorus measured using an on-line visible and near infrared sensor. Soil Tillage Res., 103: 144–152.
  • Bricklemyer, R.S. and Brown, D.J. (2010) On-the-go VisNIR: Potential and limitations for mapping soil clay and organic carbon. Comput. Electron. Agric., 70: 209–216.
  • Kusumo, B.H., Hedley, M.J., Tuohy, M.P., Hedley, C.P., and Arnold, G.C. (2010) Prediction of soil carbon and nitrogen concentrations and pasture root densities from proximally sensed soil spectral reflectance. In Proximal Soil Sensing, Viscarra-Rossel, R.A., McBratney, A.B., and Minasny, B., Eds. Springer Science+Business Media: New York, pp. 177–190.
  • Kusumo, B.H., Hedley, M.J., Hedley, C.B., and Tuohy, M.P. (2011) Measuring carbon dynamics in field soils using soil spectral reflectance: Prediction of maize root density, soil organic carbon and nitrogen content. Plant Soil, 338: 233–245.
  • Kodaira, M. and Shibusawa, S. (2013) Using a mobile real-time soil visible–near infrared sensor for high resolution soil property mapping. Geoderma, 199: 64–79.
  • Tisdall, J.M. and Oades, J.M. (1982) Organic matter and water-stable aggregates in soils. J. Soil Sci., 33: 141–163.
  • Chang, C.W., Laird, D.A., Mausbach, M.J., and Hurburgh C.R., J. (2001) Near-infrared reflectance spectroscopy—Principal components regression analyses of soil properties. Soil Sci. Soc. Am. J., 65: 480–490.
  • Madari, B.E., Reeves, J.B., III, Machado, P.L.O.A., Guimarães, C.M., Torres, E., and McCarty, G.W. (2006) Mid- and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols. Geoderma, 136: 245–259.
  • Slaughter, D.C., Pelletier, M.G., and Upadhyaya, S.K. (2001) Sensing soil moisture using NIR spectroscopy. Appl. Eng. Agric., 17: 241–247.
  • Fearn, T. (2002) Assessing calibrations: SEP, RPD, RER and R2. NIR News, 13: 12–14.
  • Zornoza, R., Guerrero, C., Mataix-Solera, J., Scow, K.M., Arcenegui, V., and Mataix-Beneyto, J. (2008) Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol. Biochem., 40: 1923–1930.
  • Bertrand, I., Janik, L.J., Holloway, R.E., Armstrong, R.D., and McLaughlin, M.J. (2002) The rapid assessment of concentrations and solid phase associations of macro- and micronutrients in alkaline soils by mid-infrared diffuse reflectance spectroscopy. Aust. J. Soil Res., 40: 1339–1356.
  • Janik, L.J. and Skjemstad, J.O. (1995) Characterization and analysis of soils using mid-infrared partial least-squares. II. Correlations with some laboratory data. Aust. J. Soil Res., 33: 637–650.
  • Genot, V., Colinet, G., Bock, L., Vanvyve, D., Reusen, Y., and Dardenne, P. (2011) Near infrared reflectance spectroscopy for estimating soil characteristics valuable in the diagnosis of soil fertility. J. Near Infrared Spectrosc., 19: 117–138.
  • Ben-Dor, E. and Banin, A. (1995) Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J., 59: 364–372.
  • Merry, R.H. and Janik, L.J. (2001) Mid infrared spectroscopy for rapid and cheap analysis of soils. 10th Australian Agronomy Conference, Hobart, Australia, January 29–February 1.
  • Rayment, G.E. and Lyons, D.J. (2011) Soil Chemical Methods–Australasia. CSIRO Publishing: Collingwood, Australia.
  • Malley, D.F., Yesmin, L., and Eilers, R.G. (2002) Rapid analysis of hog manure and manure-amended soils using near-infrared spectroscopy. Soil Sci. Soc. Am. J., 66: 1677–1686.
  • McCarty, G.W., Reeves, J.B., III, Reeves, V.B., Follett, R.F., and Kimble, J.M. (2002) Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J., 66: 640–646.
  • Janik, L.J., Skjemstand, J.O., and Raven, M.D. (1995) Characterization and analysis of soils using mid-infrared partial least squares. I. Correlations with XRF-determined major element composition. Aust. J. Soil Res., 33: 621–636.
  • Pirie, A., Singh, B., and Islam, K. (2005) Ultra-violet, visible, near-infrared, and mid-infrared diffuse reflectance spectroscopic techniques to predict several soil properties. Aust. J. Soil Res., 43: 713–721.
  • Mouazen, A.M., De Baerdemaeker, J., and Ramon, H. (2006) Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual–near infrared spectroscopy. J. Near Infrared Spectrosc., 14: 189–199.
  • Mouazen, A.M., Maleki, M.R., De Baerdemaeker, J., and Ramon, H. (2007) On-line measurement of some selected soil properties using a VIS-NIR sensor. Soil Tillage Res., 93: 13–27.
  • Slade, R., Quirk, J.R., and Norrish, K. (1991) Crystalline swelling of smectite samples in concentrated NaC1 solutions in relation to layer charge. Clays Clay Miner., 39: 234–238.
  • Laird, D.A. (1999) Layer charge influences on the hydration of expandable 2:1 phyllosilicates. Clays Clay Miner., 47: 630–636.
  • Slade, P.G. and Quirk, J.P. (1991) The limited crystalline swelling of smectites in CaCl2, MgCl2, and LaCl3 solutions. J. Colloid Interface Sci., 144: 18–26.
  • Van Groenigen, J.W., Mutters, C.S., Horwath, W.R., and Van Kessel, C. (2003) NIR and DRIFT-MIR spectrometry of soils for predicting soil and crop parameters in a flooded field. Plant Soil, 250: 155–165.
  • McBratney, A.B., Minasny, B., and Viscarra Rossel, R. (2006) Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma, 136: 272–278.
  • Islam, K., Singh, B., and McBratney, A. (2003) Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Aust. J. Soil Res., 41: 1101–1114.
  • Shepherd, K.D. and Walsh, M.G. (2007) Review: Infrared spectroscopy—Enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. J. Near Infrared Spectrosc., 15: 1–19.
  • Kim, H.J., Sudduth, K.A., and Hummel, J.W. (2009) Soil macronutrient sensing for precision agriculture. J. Environ. Monitor., 11: 1810–1824.
  • Bogrekci, I. and Lee, W.S. (2005) Spectral soil signatures and sensing phosphorus. Biosyst. Eng., 92: 527–533.
  • Soriano-Disla, J.M., Janik, L., McLaughlin, M.J., Forrester, S., Kirby, J., Reimann, C., Albanese, S., Andersson, M., Arnoldussen, A., Baritz, R., Batista, M.J., Bel-Lan, A., Birke, M., Cicchella, D., Demetriades, A., Dinelli, E., De Vivo, B., De Vos, W., Dohrmann, R., Duris, M., Dusza-Dobek, A., Eggen, O.A., Eklund, M., Ernstsen, V., Filzmoser, P., Finne, T.E., Flight, D., Fuchs, M., Fugedi, U., Gilucis, A., Gosar, M., Gregorauskiene, V., Gulan, A., Halamid, J., Haslinger, E., Hayoz, P., Hobiger, G., Hoffmann, R., Hoogewerff, J., Hrvatovic, H., Husnjak, S., Johnson, C.C., Jordan, G., Kivisilla, J., Klos, V., Krone, F., Kwecko, P., Kuti, L., Ladenberger, A., Lima, A., Locutura, J., Lucivjansky, P., Mackovych, D., Malyuk, B.I., Maquil, R., Meuli, R.G., Miosic, N., Mol, G., Négrel, P., O’Connor, P., Oorts, K., Ottesen, R.T., Pasieczna, A., Petersell, V., Pfleiderer, S., Ponavicc, M., Prazeres, C., Rauch, U., Salpeteur, I., Schedl, A., Scheib, A., Schoeters, I., Sefcik, P., Sellersjö, E., Skopljak, F., Slaninka, I., Šorša, A., Srvkota, R., Stafilov, T., Tarvainen, T., Trendavilov, V., Valera, P., Verougstraete, V., Vidojevid, D., Zissimos, A.M., and Zomeni, Z. (2013) The use of diffuse reflectance mid-infrared spectroscopy for the prediction of the concentration of chemical elements estimated by X-ray fluorescence in agricultural and grazing European soils. Appl. Geochem., 29: 135–143.
  • Sinfield, J.V., Fagerman, D., and Colic, O. (2010) Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Comput. Electron. Agric., 70: 1–18.
  • Öborn, I., Andrist-Rangel, Y., Askekaard, M., Grant, C.A., Watson, C.A., and Edwards, A.C. (2005) Critical aspects of potassium management in agricultural systems. Soil Use Manage., 21: 102–112.
  • Bramley, R.G.V. and Janik, L.J. (2005) Precision agriculture demands a new approach to soil and plant sampling and analysis—Examples from Australia. Commun. Soil Sci. Plant Anal., 36: 9–22.
  • Whitehead, D.C. (2000) Nutrient Elements in Grassland: Soil–Plant–Animal Relationships. CAB International: Wallingford, UK.
  • Minasny, B., Tranter, G., McBratney, A.B., Brough, D.M., and Murphy, B.W. (2009) Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties. Geoderma, 153: 155–162.
  • Van Vuuren, J.A.J., Meyer, J.H., and Claassens, A.S. (2006) Potential use of near infrared reflectance monitoring in precision agriculture. Commun. Soil Sci. Plant Anal., 37: 2171–2184.
  • Cozzolino, D. and Morón, A. (2003) The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics. J. Agric. Sci., 140: 65–71.
  • Fox, R.H., Shenk, J.S., Piekielek, W.P., Westerhaus, M.O., Toth, J.D., and Macneal, K.E. (1993) Comparison of near-infrared spectroscopy and other soil nitrogen availability quick tests for corn. Agron. J., 85: 1049–1053.
  • St. Luce, M., Ziadi, N., Nyiraneza, J., Tremblay, G.F., Zebarth, B.J., Whalen, J.K., and Laterrière, M. (2012) Near infrared reflectance spectroscopy prediction of soil nitrogen supply in humid temperate regions of Canada. Soil Sci. Soc. Am. J., 76: 1454–1461.
  • Martin, P.D., Malley, D.F., Manning, G., and Fuller, L. (2002) Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy. Can. J. Soil Sci., 82: 413–422.
  • Rinnan, R. and Rinnan, A. (2007) Application of near infrared reflectance (NIR) and fluorescence spectroscopy to analysis of microbiological and chemical properties of arctic soil. Soil Biol. Biochem., 39: 1664–1673.
  • Du, C., Zhou, J., Wang, H., Chen, X., Zhu, A., and Zhang, J. (2009) Determination of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy. Vib. Spectrosc., 49: 32–37.
  • Ehsani, M.R., Upadhyaya, S.K., Slaughter, D., Shafii, S., and Pelletier, M. (1999) A NIR technique for rapid determination of soil mineral nitrogen. Precis. Agric., 1: 217–234.
  • Freschet, G.T., Barthès, B.G., Brunet, D., Hien, E., and Masse, D. (2011) Use of near infrared reflectance spectroscopy (NIRS) for predicting soil fertility and historical management. Commun. Soil Sci. Plant Anal., 42: 1692–1705.
  • Maleki, M.R., Van Holm, L., Ramon, H., Merckx, R., De Baerdemaeker, J., and Mouazen, A.M. (2006) Phosphorus sensing for fresh soils using visible and near infrared spectroscopy. Biosyst. Eng., 95: 425–436.
  • Burkitt, L.L., Moody, P.W., Gourley, C.J.P., and Hannah, M.C. (2002) A simple phosphorus buffering index for Australian soils. Aust. J. Soil Res., 40: 497–513.
  • Mason, S., McNeill, A., McLaughlin, M.J., and Zhang, H. (2010) Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant Soil, 337: 243–258.
  • Cohen, M.J., Paris, J., and Clark, M.W. (2007) P-sorption capacity estimation in Southeastern USA wetland soils using visible/near infrared (VNIR) reflectance spectroscopy. Wetlands, 27: 1098–1111.
  • Morón, A. and Cozzolino, D. (2007) Measurement of phosphorus in soils by near infrared reflectance spectroscopy: Effect of reference method on calibration. Commun. Soil Sci. Plant Anal., 38: 1965–1974.
  • He, Y., Huang, M., García, A., Hernández, A., and Song, H. (2007) Prediction of soil macronutrients content using near-infrared spectroscopy. Comput. Electron. Agric., 58: 144–153.
  • Kizewski, F., Liu, Y.T., Morris, A., and Hesterberg, D. (2011) Spectroscopic approaches for phosphorus speciation in soils and other environmental systems. J. Environ. Qual., 40: 751–766.
  • Kemper, T. and Sommer, S. (2002) Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ. Sci. Technol., 36: 2742–2747.
  • Chodak, M., Ludwig, B., Khanna, P., and Beese, F. (2002) Use of near infrared spectroscopy to determine biological and chemical characteristics of organic layers under spruce and beech stands. J. Plant Nutr. Soil Sci., 165: 27–33.
  • Wu, Y., Chen, J., Wu, X., Tian, Q., Ji, J., and Qin, Z. (2005) Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils. Appl. Geochem., 20: 1051–1059.
  • Wu, Y., Chen, J., Ji, J., Gong, P., Liao, Q., Tian, Q., and Ma, H. (2007) A mechanism study of reflectance spectroscopy for investigating heavy metals in soils. Soil Sci. Soc. Am. J., 71: 918–926.
  • Malley, D.F. and Williams, P.C. (1997) Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Environ. Sci. Technol., 31: 3461–3467.
  • Kooistra, L., Wehrens, R., Leuven, R.S.E.W., and Buydens, L.M.C. (2001) Possibilities of visible–near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Anal. Chim. Acta, 446: 97–105.
  • Siebielec, G., McCarty, G.W., Stuczynski, T.I., and Reeves, J.B. III. (2004) Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content. J. Environ. Qual., 33: 2056–2069.
  • Halliwell, D.J., Barlow, K.M., and Nash, D.M. (2001) A review of the effects of wastewater sodium on soil physical properties and their implications for irrigation systems. Aust. J. Soil Res., 39: 1259–1267.
  • Panno, S.V., Hackley, K.C., Hwang, H.H., Greenberg, S.E., Krapac, I.G., Landsberger, S., and O’Kelly, D.J. (2006) Characterization and identification of Na-Cl sources in ground water. Ground Water, 44: 176–187.
  • Nag, A., Chakraborty, D., and Chandra, A. (2008) Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. J. Chem. Sci., 120: 71–77.
  • Abdi, D., Tremblay, G.F., Ziadi, N., Bélanger, G., and Parent, L.E. (2012) Predicting soil phosphorus-related properties using near-infrared reflectance spectroscopy. Soil Sci. Soc. Am. J., 76: 2318–2326.
  • Ben-Dor, E. and Banin, A. (1994) Visible and near-infrared (0.4–1.1 μm) analysis of arid and semiarid soils. Remote Sens. Environ., 48: 261–274.
  • Vendrame, P.R.S., Marchão, R.L., Brunet, D., and Becquer, T. (2012) The potential of NIR spectroscopy to predict soil texture and mineralogy in Cerrado Latosols. Eur. J. Soil Sci., 63: 743–753.
  • Summers, D., Lewis, M., Ostendorf, B., and Chittleborough, D. (2011) Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecol. Ind., 11: 123–131.
  • Viscarra Rossel, R.A., Bui, E.N., De Caritat, P., and McKenzie, N.J. (2010) Mapping iron oxides and the color of Australian soil using visible–near-infrared reflectance spectra. J. Geophys. Res. F: Earth Surf., 115.
  • Sudduth, K.A., Drummond, S.T., and Kitchen, N.R. (2001) Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Comput. Electron. Agric., 31: 239–264.
  • Terhoeven-Urselmans, T., Schmidt, H., Georg Joergensen, R., and Ludwig, B. (2008) Usefulness of near-infrared spectroscopy to determine biological and chemical soil properties: Importance of sample pre-treatment. Soil Biol. Biochem., 40: 1178–1188.
  • Kookana, R.S., Janik, L.J., Forouzangohar, M., and Forrester, S.T. (2008) Prediction of atrazine sorption coefficients in soils using mid-infrared spectroscopy and partial least-squares analysis. J. Agric. Food Chem., 56: 3208–3213.
  • Singh, B., Malley, D.F., Farenhorst, A., and Williams, P. (2012) Feasibility of using near-infrared spectroscopy for rapid quantification of 17β-estradiol sorption coefficients in soil. J. Agric. Food Chem., 60: 9948–9953.
  • Forouzangohar, M., Cozzolino, D., Kookana, R.S., Smernik, R.J., Forrester, S.T., and Chittleborough, D.J. (2009) Direct comparison between visible near- and mid-infrared spectroscopy for describing diuron sorption in soils. Environ. Sci. Technol., 43: 4049–4055.
  • Bray, J.G.P., Rossel, R.V., and Mcbratney, A.B. (2009) Diagnostic screening of urban soil contaminants using diffuse reflectance spectroscopy. Aust. J. Soil Res., 47: 433–442.
  • Janik, L., Loibner, A.P., Kattner, J., and Edelmann, E. (2011) Method for determining polycyclic aromatic hydrocarbons contaminant concentration. European Patent Office: Rijswijk, The Netherlands. WO 2011/051166 A1.
  • Malley, D.F., Hunter, K.N., and Webster, G.R.B. (1999) Analysis of diesel fuel contamination in soils by near-infrared reflectance spectrometry and solid phase microextraction–gas chromatography. J. Soil Contam., 8: 481–489.
  • Chakraborty, S., Weindorf, D.C., Morgan, C.L.S., Ge, Y., Galbraith, J.M., Li, B., and Kahlon, C.S. (2010) Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy. J. Environ. Qual., 39: 1378–1387.
  • Chakraborty, S., Weindorf, D.C., Zhu, Y., Li, B., Morgan, C.L.S., Ge, Y., and Galbraith, J. (2012) Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy. J. Environ. Monitor., 14: 2886–2892.
  • Forrester, S., Janik, L., and McLaughlin, M. (2010) In-situ determination of total petroleum hydrocarbon (TPH) contamination: A quick infrared spectroscopic test for TPH at contaminated sites. 19th World Congress of Soil Science. Brisbane, Australia, August 1–6.
  • Forrester, S.T., Janik, L.J., McLaughlin, M.J., Soriano-Disla, J.M., Stewart, R., and Dearman, B. (2013) Total petroleum hydrocarbon concentration prediction in soils using diffuse reflectance infrared spectroscopy. Soil Sci. Soc. Am. J., 77: 450–460.
  • Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., and Renella, G. (2003) Microbial diversity and soil functions. Eur. J. Soil Sci., 54: 655–670.
  • Reeves, J.B., III, McCarty, G.W., and Meisinger, J.J. (2000) Near infrared reflectance spectroscopy for the determination of biological activity in agricultural soils. J. Near Infrared Spectrosc., 8: 161–170.
  • Rasche, F., Marhan, S., Berner, D., Keil, D., Kandeler, E., and Cadisch, G. (2013) MidDRIFTS-based partial least square regression analysis allows predicting microbial biomass, enzyme activities and 16S rRNA gene abundance in soils of temperate grasslands. Soil Biol. Biochem., 57: 504–512.
  • Chodak, M. (2011) Near-infrared spectroscopy for rapid estimation of microbial properties in reclaimed mine soils. J. Plant Nutr. Soil Sci., 174: 702–709.
  • Chodak, M., Niklińska, M., and Beese, F. (2007) Near-infrared spectroscopy for analysis of chemical and microbiological properties of forest soil organic horizons in a heavy-metal–polluted area. Biol. Fertil. Soils, 44: 171–180.
  • Cécillon, L., Cassagne, N., Czarnes, S., Gros, R., and Brun, J.J. (2008) Variable selection in near infrared spectra for the biological characterization of soil and earthworm casts. Soil Biol. Biochem., 40: 1975–1979.
  • Vaidyanathan, S., Macaloney, G., and McNeil, B. (1999) Fundamental investigations on the near-infrared spectra of microbial biomass as applicable to bioprocess monitoring. Analyst, 124: 157–162.
  • Mimmo, T., Reeves, J.B., III, McCarty, G.W., and Galletti, G. (2002) Determination of biological measures by mid-infrared diffuse reflectance spectroscopy in soils within a landscape. Soil Sci., 167: 281–287.
  • Reeves, J.B., III, Follett, R.F., McCarty, G.W., and Kimble, J.M. (2006) Can near or mid-infrared diffuse reflectance spectroscopy be used to determine soil carbon pools? Commun. Soil Sci. Plant Anal., 37: 2307–2325.
  • Vance, E.D., Brookes, P.C., and Jenkinson, D.S. (1987) An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 19: 703–707.
  • Terhoeven-Urselmans, T., Michel, K., Helfrich, M., Flessa, H., and Ludwig, B. (2006) Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J. Plant Nutr. Soil Sci., 169: 168–174.
  • Schimann, H., Joffre, R., Roggy, J.C., Lensi, R., and Domenach, A.M. (2007) Evaluation of the recovery of microbial functions during soil restoration using near-infrared spectroscopy. Appl. Soil Ecol., 37: 223–232.
  • Velasquez, E., Lavelle, P., and Andrade, M. (2007) GISQ, a multifunctional indicator of soil quality. Soil Biol. Biochem., 39: 3066–3080.
  • Cécillon, L., Cassagne, N., Czarnes, S., Gros, R., Vennetier, M., and Brun, J.J. (2009) Predicting soil quality indices with near infrared analysis in a wildfire chronosequence. Sci. Total Environ., 407: 1200–1205.
  • Reeves, J.B. III, and McCarty, G.W. (2001) Quantitative analysis of agricultural soils using near infrared reflectance spectroscopy and a fibre-optic probe. J. Near Infrared Spectrosc., 9: 25–34.
  • Broos, K., Macdonald, L.M., St. Warne, M.J., Heemsbergen, D.A., Barnes, M.B., Bell, M., and McLaughlin, M.J. (2007) Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field. Soil Biol. Biochem., 39: 2693–2695.
  • Fystro, G. (2002) The prediction of C and N content and their potential mineralisation in heterogeneous soil samples using Vis-NIR spectroscopy and comparative methods. Plant Soil, 246: 139–149.
  • Russell, C.A., Angus, J.F., Batten, G.D., Dunn, B.W., and Williams, R.L. (2002) The potential of NIR spectroscopy to predict nitrogen mineralization in rice soils. Plant Soil, 247: 243–252.
  • Murphy, D.V., Osman, M., Russell, C.A., Darmawanto, S., and Hoyle, F.C. (2009) Potentially mineralisable nitrogen: Relationship to crop production and spatial mapping using infrared reflectance spectroscopy. Aust. J. Soil Res., 47: 737–741.
  • Pankhurst, C.E., Janik, L.J., Kirkby, C.A., and Hawke, B.G. (1997) Application of GC-FAME and mid-infrared analysis of soil as a measure of soil health. RIRDC Project CSO-10A, Final Report. CSIRO Land & Water: Adelaide, Australia.
  • Ngosong, C., Gabriel, E., and Ruess, L. (2012) Use of the signature fatty acid 16:1w5 as a tool to determine the distribution of arbuscular mycorrhizal fungi in soil. J. Lipids, 2012: 1–8.
  • Dick, W.A., Thavamani, B., Conley, S., Blaisdell, R., and Sengupta, A. (2013) Prediction of ß-glucosidase and ß-glucosaminidase activities, soil organic C, and amino sugar N in a diverse population of soils using near infrared reflectance spectroscopy. Soil Biol. Biochem., 56: 99–104.
  • German, D.P., Weintraub, M.N., Grandy, A.S., Lauber, C.L., Rinkes, Z.L., and Allison, S.D. (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem., 43: 1387–1397.
  • Dalal, R.C. and Henry, R.J. (1986) Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J., 50: 120–123.
  • Morra, M.J., Hall, M.H., and Freeborn, L.L. (1991) Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Sci. Soc. Am. J., 55: 288–291.
  • Hummel, J.W., Sudduth, K.A., and Hollinger, S.E. (2001) Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Comput. Electron. Agric., 32: 149–165.
  • Mouazen, A.M., Saeys, W., Xing, J., De Baerdemaeker, J., and Ramon, H. (2005) Near infrared spectroscopy for agricultural materials: An instrument comparison. J. Near Infrared Spectrosc., 13: 87–97.
  • Mouazen, A.M., Karoui, R., De Baerdemaeker, J., and Ramon, H. (2006) Characterization of soil water content using measured visible and near infrared spectra. Soil Sci. Soc. Am. J., 70: 1295–1302.
  • Janik, L.J., Merry, R.H., Forrester, S.T., Lanyon, D.M., and Rawson, A. (2007) Rapid prediction of soil water retention using mid infrared spectroscopy. Soil Sci. Soc. Am. J., 71: 507–514.
  • Sørensen, L.K. and Dalsgaard, S. (2005) Determination of clay and other soil properties by near infrared spectroscopy. Soil Sci. Soc. Am. J., 69: 159–167.
  • McCarty, G.W. and Reeves, J.B. III. (2006) Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters. Soil Sci., 171: 94–102.
  • Zimmermann, M., Leifeld, J., and Fuhrer, J. (2007) Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biol. Biochem., 39: 224–231.
  • Cobo, J.G., Dercon, G., Yekeye, T., Chapungu, L., Kadzere, C., Murwira, A., Delve, R., and Cadisch, G. (2010) Integration of mid-infrared spectroscopy and geostatistics in the assessment of soil spatial variability at landscape level. Geoderma, 158: 398–411.
  • Sudduth, K.A., Kitchen, N.R., Sadler, E.J., Drummond, S.T., and Myers, D.B. (2010) VNIR spectroscopy estimates of within-field variability in soil properties. In Proximal Soil Sensing, Viscarra-Rossel, R.A., McBratney, A.B., and Minasny, B., Eds. Springer Science+Business Media: New York, pp. 153–163.
  • Wetterlind, J., Stenberg, B., and Söderström, M. (2010) Increased sample point density in farm soil mapping by local calibration of visible and near infrared prediction models. Geoderma, 156: 152–160.
  • Leone, A.P., Viscarra-Rossel, R.A., Amenta, P., and Buondonno, A. (2012) Prediction of soil properties with PLSR and Vis-NIR spectroscopy: Application to mediterranean soils from southern Italy. Curr. Anal. Chem., 8: 283–299.
  • Masserschmidt, I., Cuelbas, C.J., Poppi, R.J., De Andrade, J.C., De Abreu, C.A., and Davanzo, C.U. (1999) Determination of organic matter in soils by FTIR/diffuse reflectance and multivariate calibration. J. Chemom., 13: 265–273.
  • Confalonieri, M., Fornasier, F., Ursino, A., Boccardi, F., Pintus, B., and Odoardi, M. (2001) The potential of near infrared reflectance spectroscopy as a tool for the chemical characterisation of agricultural soils. J. Near Infrared Spectrosc., 9: 123–131.
  • Chang, C. and Laird, D.A. (2002) Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci., 167: 110–116.
  • Dunn, B.W., Beecher, H.G., Batten, G.D., and Ciavarella, S. (2002) The potential of near-infrared reflectance spectroscopy for soil analysis—A case study from the Riverine Plain of south-eastern Australia. Aust. J. Exp. Agric., 42: 607–614.
  • Fidêncio, P.H., Poppi, R.J., and De Andrade, J.C. (2002) Determination of organic matter in soils using radial basis function networks and near infrared spectroscopy. Anal. Chim. Acta, 453: 125–134.
  • Moron, A. and Cozzolino, D. (2004) Determination of potentially mineralizable nitrogen and nitrogen in particulate organic matter fractions in soil by visible and near-infrared reflectance spectroscopy. J. Agric. Sci., 142: 335–343.
  • Van Waes, C., Mestdagh, I., Lootens, P., and Carlier, L. (2005) Possibilities of near infrared reflectance spectroscopy for the prediction of organic carbon concentrations in grassland soils. J. Agric. Sci., 143: 487–492.
  • Butkute, B. and Šlepetiene, A. (2006) Application of near infrared reflectance spectroscopy for the assessment of soil quality in a long-term pasture. Commun. Soil Sci. Plant Anal., 37: 2389–2409.
  • Leifeld, J. (2006) Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter. Eur. J. Soil Sci., 57: 846–857.
  • Mutuo, P.K., Shepherd, K.D., Albrecht, A., and Cadisch, G. (2006) Prediction of carbon mineralization rates from different soil physical fractions using diffuse reflectance spectroscopy. Soil Biol. Biochem., 38: 1658–1664.
  • Brunet, D., Barthès, B.G., Chotte, J., and Feller, C. (2007) Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: Effects of sample grinding and set heterogeneity. Geoderma, 139: 106–117.
  • Barthès, B.G., Brunet, D., Hien, E., Enjalric, F., Conche, S., Freschet, G.T., D’Annunzio, R., and Toucet-Louri, J. (2008) Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples. Soil Biol. Biochem., 40: 1533–1537.
  • Brunet, D., Bernoux, M., and Barthès, B.G. (2008) Comparison between predictions of C and N contents in tropical soils using a Vis-NIR spectrometer including a fibre-optic probe versus a NIR spectrometer including a sample transport module. Biosyst. Eng., 100: 448–452.
  • Morgan, C.L.S., Waiser, T.H., Brown, D.J., and Hallmark, C.T. (2009) Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma, 151: 249–256.
  • Moros, J., Martínez-Sánchez, M.J., Pérez-Sirvent, C., Garrigues, S., and de la Guardia, M. (2009) Testing of the region of Murcia soils by near infrared diffuse reflectance spectroscopy and chemometrics. Talanta, 78: 388–398.
  • Fontán, J.M., Calvache, S., López-Bellido, R.J., and López-Bellido, L. (2010) Soil carbon measurement in clods and sieved samples in a Mediterranean vertisol by visible and near-infrared reflectance spectroscopy. Geoderma, 156: 93–98.
  • Mouazen, A.M., Kuang, B., De Baerdemaeker, J., and Ramon, H. (2010) Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 158: 23–31.
  • Kamau-Rewe, M., Rasche, F., Cobo, J.G., Dercon, G., Shepherd, K.D., and Cadisch, G. (2011) Generic prediction of soil organic carbon in alfisols using diffuse reflectance Fourier-transform mid-infrared spectroscopy. Soil Sci. Soc. Am. J., 75: 2358–2360.
  • Kuang, B. and Mouazen, A.M. (2011) Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. Eur. J. Soil Sci., 62: 629–636.
  • Sarkhot, D.V., Grunwald, S., Ge, Y., and Morgan, C.L.S. (2011) Comparison and detection of total and available soil carbon fractions using visible/near infrared diffuse reflectance spectroscopy. Geoderma, 164: 22–32.
  • Vohland, M., Besold, J., Hill, J., and Fründ, H.C. (2011) Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma, 166: 198–205.
  • Vohland, M. and Emmerling, C. (2011) Determination of total soil organic C and hot water-extractable C from VIS-NIR soil reflectance with partial least squares regression and spectral feature selection techniques. Eur. J. Soil Sci., 62: 598–606.
  • Xie, H.T., Yang, X.M., Drury, C.F., Yang, J.Y., and Zhang, X.D. (2011) Predicting soil organic carbon and total nitrogen using mid- and near-infrared spectra for Brookston clay loam soil in Southwestern Ontario, Canada. Can. J. Soil Sci., 91: 53–63.
  • Cambule, A.H., Rossiter, D.G., Stoorvogel, J.J., and Smaling, E.M.A. (2012) Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park, Mozambique. Geoderma, 183–184: 41–48.
  • Fuentes, M., Hidalgo, C., González-Martín, I., Hernández-Hierro, J.M., Govaerts, B., Sayre, K.D., and Etchevers, J. (2012) NIR spectroscopy: An alternative for soil analysis. Commun. Soil Sci. Plant Anal., 43: 346–356.
  • Northup, B.K. and Daniel, J.A. (2012) Near infrared reflectance-based tools for predicting soil chemical properties of Oklahoma grazinglands. Agron. J., 104: 1122–1129.
  • McDowell, M.L., Bruland, G.L., Deenik, J.L., Grunwald, S., and Knox, N.M. (2012) Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy. Geoderma, 189–190: 312–320.
  • Xie, X.L., Pan, X.Z., and Sun, B. (2012) Visible and near-infrared diffuse reflectance spectroscopy for prediction of soil properties near a copper smelter. Pedosphere, 22: 351–366.
  • Yang, H., Kuang, B., and Mouazen, A.M. (2012) Quantitative analysis of soil nitrogen and carbon at a farm scale using visible and near infrared spectroscopy coupled with wavelength reduction. Eur. J. Soil Sci., 63: 410–420.
  • Yang, X.M., Xie, H.T., Drury, C.F., Reynolds, W.D., Yang, J.Y., and Zhang, X.D. (2012) Determination of organic carbon and nitrogen in particulate organic matter and particle size fractions of Brookston clay loam soil using infrared spectroscopy. Eur. J. Soil Sci., 63: 177–188.
  • Ludwig, B., Khanna, P.K., Bauhus, J., and Hopmans, P. (2002) Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. For. Ecol. Manage., 171: 121–132.
  • Morón, A. and Cozzolino, D. (2002) Application of near infrared reflectance spectroscopy for the analysis of organic C, total N and pH in soils of Uruguay. J. Near Infrared Spectrosc., 10: 215–221.
  • Reeves, J., III, McCarty, G., and Mimmo, T. (2002) The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environ. Pollut., 116: S277–S284.
  • Coûteaux, M.M., Berg, B., and Rovira, P. (2003) Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biol. Biochem., 35: 1587–1600.
  • Bloesch, P.M. (2012) Prediction of the CEC to clay ratio using mid-infrared spectroscopy. Soil Res., 50: 1–6.
  • Song, Y., Li, F., Yang, Z., Ayoko, G.A., Frost, R.L., and Ji, J. (2012) Diffuse reflectance spectroscopy for monitoring potentially toxic elements in the agricultural soils of Changjiang River Delta, China. Appl. Clay Sci., 64: 75–83.
  • Barthès, B.G., Brunet, D., Brauman, A., Fromin, N., Lensi, R., Volant, A., Laclau, J.P., Blavet, D., and Chapuis-Lardy, L. (2010) Determination of potential denitrification in a range of tropical topsoils using near infrared reflectance spectroscopy (NIRS). Appl. Soil Ecol., 46: 81–89.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.