442
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Microplasma-Based Detectors for Gas Chromatography: Current Status and Future Trends

, , , &

References

  • James, A.T., and Martin, A.J.P. (1952) Gas–liquid partition chromatography: The separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J., 50 (5): 679–690.
  • James, A.T. and Martin, A.J.P. (1952) Gas–liquid partition chromatography. A technique for the analysis of volatile materials. Analyst, 77 (921): 915–932.
  • Frysinger, G.S. and Gaines, R.B. (2001) Separation and identification of petroleum biomarkers by comprehensive two-dimensional gas chromatography. J. Separ. Sci., 24 (2): 87–96.
  • Zuo, Y., Zhang, L., Wu, J., Fritz, J.W., Medeiros, S., and Rego, C. (2004) Ultrasonic extraction and capillary gas chromatography determination of nicotine in pharmaceutical formulations. Anal. Chim. Acta, 526 (1): 35–39.
  • Grimsey, I.M., Feeley, J.C., and York, P. (2004) Analysis of the surface energy of pharmanceutical powders by inverse gas chromatography. J. Pharm. Sci., 91 (2): 571–583.
  • Adahchour, M., Beens, J., Vreuls, R.J.J., Batenburg, A.M., and Brinkman, U.A.T. (2004) Comprehensive two-dimensional gas chromatography of complex samples by using a “reversed-type” column combination: Application to food analysis. J. Chrom., 1054 (1–2): 47–55.
  • Hernández, F., Portolés, T., Pitarch, E., and López, F.J. (2011) Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology. TrAC: Trends in Analytical Chemistry, 30 (2): 388–400.
  • Bianchi, F., Careri, M., Mangia, A., and Musci, M. (2007) Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Separ. Sci., 30 (4): 563–572.
  • Albero, B., Sánchez-Brunete, C., and Tadeo, J.L. (2003) Determination of organophosphorus pesticides in fruit juices by matrix solid-phase dispersion and gas chromatography. J. Agr. Food. Chem., 51 (24): 6915–6921.
  • Sandra, P., Tienpont, B., and David, F. (2003) Multi-residue screening of pesticides in vegetables, fruits and baby food by stir bar sorptive extraction–thermal desorption–capillary gas chromatography–mass spectrometry. J. Chrom., 1000 (1–2): 299–309.
  • Furlani, R.P.Z., Marcilio, K.M., Leme, F.M., and Tfouni, S.A.V. (2011) Analysis of pesticide residues in sugarcane juice using QuEChERS sample preparation and gas chromatography with electron capture detection. Food Chem., 126 (3): 1283–1287.
  • Yang, X., Zhang, H., Liu, Y., Wang, J., Zhang, Y.C., Dong, A.J., Zhao, H.T., Sun, C.H., and Cui, J. (2011) Multiresidue method for determination of 88 pesticides in berry fruits using solid-phase extraction and gas chromatography–mass spectrometry: Determination of 88 pesticides in berries using SPE and GC–MS. Food Chem., 127 (2): 855–865.
  • Ieda, T., Ochiai, N., Miyawaki, T., Ohura, T., and Horii, Y. (2011) Environmental analysis of chlorinated and brominated polycyclic aromatic hydrocarbons by comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. J. Chrom., 1218 (21): 3224–3232.
  • Wiest, L., Buleté, A., Giroud, B., Fratta, C., Amic, S., Lambert, O., Pouliquen, H., and Arnaudguilhem, C. (2011) Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J. Chrom., 1218 (34): 5743–5756.
  • Van der Westhuizen, R., Ajam, M., De Coning, P., Beens, J., de Villiers, A., and Sandra, P. (2011) Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels. J. Chrom., 1218 (28): 4478–4486.
  • Becker, K.H., Schoenbach, K.H., and Eden, J.G. (2006) Microplasmas and applications. J. Phys. Appl. Phys., 39 (3): R55–R70.
  • Luo, D., and Duan, Y. (2012) Microplasmas for analytical applications of lab-on-a-chip. TrAC: Trends in Analytical Chemistry, 39: 254–266.
  • Meyer, C., Müller, S., Gurevich, E.L., and Franzke, J. (2011) Dielectric barrier discharges in analytical chemistry. Analyst, 136 (12): 2427–2440.
  • Yuan, X., Tang, J., and Duan, Y. (2011) Microplasma technology and its applications in analytical chemistry. Appl. Spectros. Rev., 46 (7): 581–605.
  • Martnes, T., Mihailova, D., van Dijk, J., and Bogaerts, A. (2009) Theoretical characterization of an atmospheric pressure glow discharge used for analytical spectrometry. Anal. Chem., 81 (21): 9096–9108.
  • Iza, F., Kim, G.J., Lee, S.M., Lee, J.K., Walsh, J.L., Zhang, Y.T., and Kong, M.G. (2008) Microplasmas: Sources, particle kinetics, and biomedical applications. Plasma Process. Polymer., 5 (4): 322–344.
  • Fu, Y.-M., Chu, S.-C., and Lu, C.-J. (2008) Characteristic responses of an atmospheric pressure DC micro-plasma detector for gas chromatography to organic functional groups. Microchem. J., 89 (1): 7–12.
  • Harley, J., and Pretorius, V. (1956) A new detector for vapour phase chromatography. Nature, 178 (4544): 1244–1244.
  • McCormack, A.J., Tong, S.C., and Cooke, W.D. (1965) Sensitive selective gas chromatography detector based on emission spectrometry of organic compounds. Anal. Chem., 37 (12): 1470–1476.
  • Sarafraz-Yazdi, A., Amiri, A.H., and Es’haghi, Z. (2008) BTEX determination in water matrices using HF-LPME with gas chromatography–flame ionization detector. Chemosphere, 71 (4): 671–676.
  • Amini, R., Rouhollahi, A., Adibi, M., and Mehdinia, A. (2011) A new disposable ionic liquid based coating for headspace solid-phase microextraction of methyl tert-butyl ether in a gasoline sample followed by gas chromatography–flame ionization detection. Talanta, 84 (1): 1–6.
  • Kaanta, B.C., Chen, H., Lambertus, G., Steinecker, W.H., Zhdaneev, O., and Zhang, X. (2009) High sensitivity micro-thermal conductivity detector for gas chromatography. IEEE ASME J. Microelectromech. Syst., 25 (29): 264–267.
  • Fenoll, J., Hellin, P., Martinez, C., Miguel, M., and Flores, P. (2007) Multiresidue method for analysis of pesticides in pepper and tomato by gas chromatography with nitrogen–phosphorus detection. Food Chem., 105 (2): 711–719.
  • Von Mühlen, C., de Oliveira, E.C., Morrison, P.D., Zini, C.A., Caramão, E.B., and Marriott, P.J. (2007) Qualitative and quantitative study of nitrogen-containing compounds in heavy gas oil using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection. J. Separ. Sci., 30 (18): 3223–3232.
  • Ahmadi, F., Assadi, Y., Hosseini, S.M.R.M., and Rezaee, M. (2006) Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography–flame photometric detector. J. Chrom., 1101 (1–2): 307–312.
  • Matsadiq, G., Hu, H.-L., Ren, H.-B., Zhou, Y.-W., Liu, L., and Cheng, J. (2011) Quantification of multi-residue levels in peach juices, pulps and peels using dispersive liquid–liquid microextraction based on floating organic droplet coupled with gas chromatography–electron capture detection. J. Chrom. B, 879 (22): 2113–2118.
  • Fattahi, N., Assadi, Y., Hosseini, M.R.M., and Jahromi, E.Z. (2007) Determination of chlorophenols in water samples using simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography–electron-capture detection. J. Chrom., 1157 (1–2): 23–29.
  • Kozani, R., Assadi, Y., Shemirani, F., Hosseini, M., and Jamali, M. (2007) Part-per-trillion determination of chlorobenzenes in water using dispersive liquid–liquid microextraction combined gas chromatography–electron capture detection. Talanta, 72 (2): 387–393.
  • Westmoreland, D.G. and Rhodes, G.R. (1989) Analytical techniques for trace organic compounds II. Detectors for gas chromatography. Pure Appl. Chem., 61 (6): 1147–1160.
  • Miclea, M., Okruss, M., Kunze, K., Ahlman, N., and Franzke, J. (2007) Microplasma-based atomic emission detectors for gas chromatography. Anal. Bioanal. Chem., 388 (8): 1565–1572.
  • Karanassios, V. (2004) Microplasmas for chemical analysis: Analytical tools or research toys? Spectrochim. Acta B Atom. Spectros., 59 (7): 909–928.
  • Guchardi, R. and Hauser, P.C. (2004) Determination of non-metals in organic compounds by gas chromatography with a miniature capacitively coupled plasma emission detector. JAAS: Journal of Analytical Atomic Spectrometry, 19 (8): 945–949.
  • Eiceman, G.A., Gardea-Torresdey, J., Dorman, F., Overton, E., Bhushan, A., and Dharmasena, H.P. (2006) Gas chromatography. Anal. Chem., 78 (12): 3985–3996.
  • Tienpont, B., David, F., Witdouck, W., Vermeersch, D., Stoeri, H., and Sandra, P. (2008) Features of a micro-gas chromatograph equipped with enrichment device and microchip plasma emission detection (μPED) for air monitoring. Lab Chip, 8 (11): 1819–1828.
  • Bass, A., Chevalier, C., and Blades, M.W. (2001) A capacitively coupled microplasma (CCμP) formed in a channel in a quartz wafer. JAAS: Journal of Analytical Atomic Spectrometry, 16 (9): 919–921.
  • Pedersen-Bjergaard, S. and Greibrokk, T. (1993) On-column bromine- and chlorine-selective detection for capillary gas chromatography using a radio frequency plasma. Anal. Chem., 65 (15): 1998–2002.
  • Skelton, R.J., Markides, K.E., Lee, M.L., and Farnsworth, P.B. (1990) Characterization of near-infrared atomic emission from a radio-frequency plasma for selective detection in capillary gas chromatography. Appl. Spectros., 44 (5): 853–857.
  • Skelton, R.J., Chang, H.C., Farnsworth, P.B., Markides, K.E., and Lee, M.L. (1989) Radion frequence plasma detector for sulfur selective caplillary gas chromatogarphic analysis of fossil fuels. Anal. Chem., 61 (20): 2292–2298.
  • Pedersen-Bjergaard, S. and Greibrokk, T. (1994) On-column atomic emission detection in capillary gas chromatography using a radio frequency plasma. J. Microcolumn Sep., 6 (1): 11–18.
  • Asp, T.N., Pedersen-Bjergaard, S., and Greibrokk, T. (1997) Determination of chlorinated and brominated micropollutants by capillary gas chromatography coupled with on-column radio-frequency plasma atomic emission detection. J. High. Resolut. Chrom., 20 (4): 201–207.
  • Guchardi, R., and Hauser, P.C. (2003) A capacitively coupled microplasma in a fused silica capillary. JAAS: Journal of Analytical Atomic Spectrometry, 18 (9): 1056–1059.
  • Guchardi, R., and Hauser, P.C. (2004) Capacitively coupled microplasma for on-column detection of chromatographically separated inorganic gases by optical emission spectrometry. J. Chrom., 1033 (2): 333–338.
  • Guchardi, R., and Hauser, P.C. (2004) Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector. Analyst, 129 (4): 347–351.
  • Gross, R., Platzer, B., Leitner, E., Schalk, A., and Sinabell, H., Zach, H., and Knapp, G. (1992) Atomic emission gas chromatographic detection—Chemical and spectral interferences in the stabilized capacitive plasma (SCP). Spectrochim. Acta B Atom. Spectros., 47 (1): 95–106.
  • Cziesla, K., Platzer, B., Okruss, M., Florek, S., and Otto, M. (2001) Hyphenation of a near-infrared echelle spectrometer to a microplasma for element-selective detection in gas chromatography. Fresen. J. Anal. Chem., 371 (8): 1043–1046.
  • Eijkel, J.C.T., Stoeri, H., and Manz, A. (2000) A DC microplasma on a chip employed as an optical emission detector for gas chromatography. Anal. Chem., 72 (11): 2547–2552.
  • Eijkel, J.C.T., Stoeri, H., and Manz, A. (1999) A molecular emission detector on a chip employing a direct current microplasma. Anal. Chem., 71 (4): 2600–2606.
  • Eijkel, J.C.T., Stoeri, H., and Manz, A. (2000) An atmospheric pressure DC glow discharge on a microchip and its application as a molecular emission detector. JAAS: Journal of Analytical Atomic Spectrometry, 15 (3): 297–300.
  • Naji, O.P. and Manz, A. (2004) A double plasma gas chromatography injector and detector. Lab Chip, 4 (5): 431–437.
  • Bessoth, F.G., Naji, O.P., Eijkel, J.C.T., and Manz, A. (2002) Towards an on-chip gas chromatograph: The development of a gas injector and a DC plasma emission detector. JAAS: Journal of Analytical Atomic Spectrometry, 17 (8): 794–799.
  • Duan, Y., Su, Y., and Jin, Z. (2003) Capillary-discharge-based portable detector for chemical vapor monitoring. Rev. Sci. Instrum., 74 (5): 2811–2816.
  • Jin, Z., Su, Y., and Duan, Y. (2001) A low-power, atmospheric pressure, pulsed plasma source for molecular emission spectrometry. Anal. Chem., 73 (2): 360–365.
  • Duan, Y., Huang, C., and Yu, Q. (2005) Low-temperature direct current glow discharges at atmospheric pressure. IEEE Trans. Plasma Sci., 33 (2): 328–329.
  • Miclea, M., Kunze, K., Heitmann, U., Florek, S., Franzke, J., and Niemax, K. (2005) Diagnostics and application of the microhollow cathode discharge as an analytical plasma. J. Phys. Appl. Phys., 38 (11): 1709–1715.
  • Schepers, C. and Broekaert, J.A.C. (2000) The use of a hollow cathode glow discharge (HCGD) as an atomic emission spectrometric element specific detector for chlorine and bromine in gas chromatography. JAAS: Journal of Analytical Atomic Spectrometry, 15 (1): 61–65.
  • Quan, X., Chen, S., Platzer, B., Chen, J., and Gfrerer, M. (2002) Simultaneous determination of chlorinated organic compounds from environmental samples using gas chromatography coupled with a micro electron capture detector and micro-plasma atomic emission detector. Spectrochim. Acta B Atom. Spectros., 57 (1): 189–199.
  • Meyer, C., Demecz, D., Gurevich, E.L., Marggraf, U., Jestel, G., and Franzke, J. (2012) Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy. JAAS: Journal of Analytical Atomic Spectrometry, 27 (4): 677–681.
  • Gruber, M., Bohling, M., Knuppertz, H., Mogl, M., and Winkelmann, H. (2010) Micro-optical gas sensor module based on atomic emission. Latin America Optics and Photonics Conference. Recife, Brazil, September 27–30.
  • Gruber, M., Bohling, M., Mogl, M., Knuppertz, H., and Winkelmann, H. (2010) Integrated sensor head for gas analysis via atomic emission spectroscopy. Sensors, 2010 IEEE. Kona, HI, November 1–4.
  • Gruber, M., Bohling, M., Winkelmann, H., and Knuppertz, H. (2010) Novel micro-optical collector design for a gas chromatographic detector based on atomic emission spectroscopy. Optic. Eng., 49 (12): 1–8.
  • Li, W., Zheng, C., Fan, G., Tang, L., Xu, K., Lv, Y., and Hou, X. (2011) Dielectric barrier discharge molecular emission spectrometer as multichannel GC detector for halohydrocarbons. Anal. Chem., 83 (13): 5050–5055.
  • Li, Y., Hu, J., Tang, L., He, Y., Wu, X., Hou, X., and Lv, Y. (2008) Miniaturized dielectric barrier discharge induced chemiluminescence for detection of volatile chlorinated hydrocarbons separated by gas chromatography. J. Chrom., 1192 (1): 194–197.
  • Kadenkin, A., and Broekaert, J.A.C. (2011) Studies with a miniaturized microwave induced plasma for element specific detection in gas chromatographic separations of halogenated hydrocarbons. JAAS: Journal of Analytical Atomic Spectrometry, 26 (7): 1481–1487.
  • Bilgic, A.M., Voges, E., Engel, U., and Broekaert, J.A.C. (2000) A low-power 2.45 GHz microwave induced helium plasma source at atmospheric pressure based on microstrip technology. JAAS: Journal of Analytical Atomic Spectrometry, 15 (6): 579–580.
  • Hoskinson, A.R., Hopwood, J., Bostrom, N.W., Crank, J.A., and Harrison, C. (2011) Low-power microwave-generated helium microplasma for molecular and atomic spectrometry. JAAS: Journal of Analytical Atomic Spectrometry, 26 (6): 1258–1264.
  • Yuan, X., Ding, X., Zhao, Z., Zhan, X., and Duan, Y. (2012) Performance evaluation of a newly designed DC microplasma for direct organic compound detection through molecular emission spectrometry. JAAS: Journal of Analytical Atomic Spectrometry, 27 (12): 2094–2101.
  • Kunze, K., Miclea, M., Franzke, J., and Niemax, K. (2003) The dielectric barrier discharge as a detector for gas chromatography. Spectrochim. Acta B Atom. Spectros., 58 (8): 1435–1443.
  • Miclea, M., Kunze, K., Musa, G., Franzke, J., and Niemax, K. (2001) The dielectric barrier discharge—A powerful microchip plasma for diode laser spectrometry. Spectrochim. Acta B Atom. Spectros., 56 (1): 37–43.
  • Miclea, M., Kunze, K., Franzke, J., and Niemax, K. (2002) Plasmas for lab-on-the-chip applications. Spectrochim. Acta B Atom. Spectros., 57 (10): 1585–1592.
  • Brede, C., Pedersen-Bjergaard, S., Lundanes, E., and Greibrokk, T. (1998) Microplasma mass spectrometric detection in capillary gas chromatography. Anal. Chem., 70 (3): 513–518.
  • Brede, C., Pedersen-Bjergaard, S., Lundanes, E., and Greibrokk, T. (1999) Capillary gas chromatography coupled with microplasma mass spectrometry for organotin speciation. J. Chrom., 849 (2): 553–562.
  • Brede, C., Lundanes, E., and Greibrokk, T. (1998) Simultaneous element-selective detection of C, F, Cl, Br, and I by capillary gas chromatography coupled with microplasma mass spectrometry. J. High Resolut. Chrom., 21 (12): 633–639.
  • Kim, H.J., Woo, Y.A., Kang, J.S., Anderson, S.S., and Piepmeier, E.H. (2000) Development of an atmospheric pressure glow discharge detector for capillary column gas chromatography. Microchim. Acta, 134 (1–2): 1–7.
  • Gras, R., Luong, J., Monagle, M., and Winniford, B. (2006) Gas chromatographic applications with the dielectric barrier discharge detector. J. Chromatogr. Sci., 44 (2): 101–107.
  • Franzke, J., Kunze, K., Miclea, M., and Niemax, K. (2003) Microplasmas for analytical spectrometry. JAAS: Journal of Analytical Atomic Spectrometry, 18 (7): 802–807.
  • Miclea, M., and Franzke, J. (2007) Analytical detectors based on microplasma spectrometry. Plasma Chem. Plasma Process., 27 (2): 205–224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.