558
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Progress on Laser-Induced Decomposition of Explosives Investigated by Spectroscopic Methods

, , , , , & show all

References

  • Kakar, S., Nelson, A.J., Treusch, R., Heske, C., Van Buuren, T., Jimenez, I., Pagoria, P., and Terminello, L.J. (2000) Electronic structure of the energetic material 1,3,5-triamino-2,4,6-trinitrobenzene. Phys. Rev. B, 62 (23): 15666 –15672.
  • Bhattacharya, A., Guo, Y., and Bernstein, E.R. (2012) A comparison of the decomposition of electronically excited nitro-containing molecules with energetic moieties C&sbnd;NO2, N&sbnd;NO2, and O&sbnd;NO2. J. Chem. Phys., 136. (2): 024321/1–024321/9.
  • Mäkinen, M., Nousiainen, M., and Sillanpää, M. (2011) Ion spectrometric detection technologies for ultra‐traces of explosives: A review. Mass. Spectrom. Rev., 30 (5): 940–973.
  • Kim, S., Lee, D., Liu, X., Van Neste, C., Jeon, S., and Thundat, T. (2013) Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser. Sci. Rep., 3.. Available at: http://www.nature.com/srep/2013/130123/srep01111/full/srep01111.html
  • Delgado, T., Vadillo, J.M., and Laserna, J.J. (2013) Laser-induced plasma spectroscopy of organic compounds. Understanding fragmentation processes using ion–photon coincidence measurements. JAAS: Journal of Analytical Atomic Spectrometry, 28 (9): 1377–1384.
  • Kunz, A.B. (1996) Ab initio investigation of the structure and electronic properties of the energetic solids TATB and RDX. Phys. Rev. B, 53 (15): 9733–9738.
  • Glascoe, E.A., Zaug, J.M., Armstrong, M.R., Crowhurst, J.C., Grant, C.D., and Fried, L.E. (2009) Nanosecond time-resolved and steady-state infrared studies of photoinduced decomposition of TATB at ambient and elevated pressure. J. Phys. Chem. A, 113 (20): 5881–5887.
  • Atkins, P. and de Paula, J. (1998) Physical Chemistry. 6th ed. Oxford University Press: Oxford, UK.
  • Naik, N., Gore, G., Gandhe, B., and Sikder, A. (2008) Studies on thermal decomposition mechanism of CL-20 by pyrolysis gas chromatography–mass spectrometry (Py-GC/MS). J. Hazard. Mater., 159 (2): 630–635.
  • Tsyshevsky, R.V., Sharia, O., and Kuklja, M.M. (2013) Thermal decomposition mechanisms of nitroesters: Ab initio modeling of pentaerythritol tetranitrate. J. Phys. Chem. C, 117 (35): 18144–18153.
  • McMillen, D., Erlich, D., He, C., Becker, C., and Shockey, D. (1997) Fracture-induced and thermal decomposition of NTO using laser ionization mass spectrometry. Combust. Flame, 111 (3): 133–160.
  • Kosmidis, C., Ledingham, K., Clark, A., Marshall, A., Jennings, R., Sander, J., and Singhal, R. (1994) On the dissociation pathways of nitrobenzene. Int. J. Mass. Spectrom., 135 (2): 229–242.
  • Kosmidis, C., Ledingham, K., Kilic, H., McCanny, T., Singhal, R., Langley, A., and Shaikh, W. (1997) On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm. J. Phys. Chem. A, 101 (12): 2264–2270.
  • Civiš, M., Civiš, S., Sovová, K., Dryahina, K., Španěl, P., and Kyncl, M. (2011) Laser ablation of FOX-7: Proposed mechanism of decomposition. Anal. Chem., 83 (3): 1069–1077.
  • Delgado, T., Alcántara, J.F., Vadillo, J.M., and Laserna, J.J. (2013) Condensed‐phase laser ionization time‐of‐flight mass spectrometry of highly energetic nitro‐aromatic compounds. Rapid Commun. Mass. Spectrom., 27 (15): 1807–1813.
  • Mullen, C., Coggiola, M.J., and Oser, H. (2009) Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds. J. Am. Soc. Mass Spectrom., 20 (3): 419–429.
  • Bhattacharya, A., Guo, Y., and Bernstein, E. (2009) Unimolecular decomposition of tetrazine-N-oxide based high nitrogen content energetic materials from excited electronic states. J. Chem. Phys., 131. (19): 194304/1–194304/8.
  • Guo, Y., Greenfield, M., and Bernstein, E. (2005) Decomposition of nitramine energetic materials in excited electronic states: RDX and HMX. J. Chem. Phys., 122. (24): 244310/1–244310/6.
  • Bhattacharya, A., Guo, Y., and Bernstein, E. (2009) Experimental and theoretical exploration of the initial steps in the decomposition of a model nitramine energetic material: Dimethylnitramine. J. Phys. Chem. A, 113 (5): 811–823.
  • Rebbert, R. (1963) Primary processes in the photolysis of ethyl nitrate. J. Phys. Chem., 67 (9): 1923–1925.
  • Zhu, L. and Ding, C.-F. (1997) Temperature dependence of the near UV absorption spectra and photolysis products of ethyl nitrate. Chem. Phys. Lett., 265 (1): 177–184.
  • Renlund, A.M. and Trott, W.M. (1984) ArF laser-induced decomposition of simple energetic niolecules. Chem. Phys. Lett., 107 (6): 555–560.
  • He, S., Chen, Z., and Zhang, X. (2011) Photochemical reactions of methyl and ethyl nitrate: A dual role for alkyl nitrates in the nitrogen cycle. Environ. Chem., 8 (6): 529–542.
  • Ling, P., and Wight, C.A. (1997) Laser photodissociation and thermal pyrolysis of energetic polymers. J. Phys. Chem. B, 101 (12): 2126–2131.
  • Stoltz, C. and Peiris, S. (2007) T-Jump/FTIR studies of poly-glycidyl nitrate (PGN) pyrolysis. AIP Conference Proceedings, . HI, June 24–29.
  • Roos, B.D. and Brill, T.B. (2002) Thermal decomposition of energetic materials 82. Correlations of gaseous products with the composition of aliphatic nitrate esters. Combust. Flame, 128 (1): 181–190.
  • Swayambunathan, V., Singh, G., and Sausa, R.C. (1999) Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials. Appl. Optic., 38 (30): 6447–6454.
  • Ng, W., Field, J., and Hauser, H. (1986) Thermal, fracture, and laser‐induced decomposition of pentaerythritol tetranitrate. J. Appl. Phys., 59 (12): 3945–3952.
  • Yu, Z. and Bernstein, E.R. (2011) Decomposition of pentaerythritol tetranitrate [C(CH2ONO2)4] following electronic excitation. J. Chem. Phys., 135. (15): 154305/1–154305/10.
  • Aluker, E.D., Krechetov, A.G., Mitrofanov, A.Y., Nurmukhametov, D.R., and Kuklja, M.M. (2011) Laser initiation of energetic materials: Selective photoinitiation regime in pentaerythritol tetranitrate. J. Phys. Chem. C, 115 (14): 6893–6901.
  • Hause, M.L., Herath, N., Zhu, R., Lin, M., and Suits, A.G. (2011) Roaming-mediated isomerization in the photodissociation of nitrobenzene. Nature Chem., 3 (12): 932–937.
  • Li, Y.-M., Sun, J.-L., Yin, H.-M., Han, K.-L., and He, G.-Z. (2003) Photodissociation of nitrobenzene at 266 nm: Experimental and theoretical approach. J. Chem. Phys., 118. (14): 6244–6249.
  • Galloway, D.B., Bartz, J.A., Huey, L.G., and Crim, F.F. (1993) Pathways and kinetic energy disposal in the photodissociation of nitrobenzene. J. Chem. Phys., 98 (3): 2107–2115.
  • Galloway, D.B., Glenewinkel‐Meyer, T., Bartz, J.A., Huey, L.G., and Crim, F.F. (1994) The kinetic and internal energy of NO from the photodissociation of nitrobenzene. J. Chem. Phys., 100. (3): 1946–1953.
  • Lin, M.-F., Lee, Y.T., Ni, C.-K., Xu, S., and Lin, M. (2007) Photodissociation dynamics of nitrobenzene and o-nitrotoluene. J. Chem. Phys., 126: 064310.
  • Cohen, R., Zeiri, Y., Wurzberg, E., and Kosloff, R. (2007) Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): A DFT study. J. Phys. Chem. A, 111 (43): 11074–11083.
  • Sovová, K., Dryahina, K., Španěl, P., Kyncl, M., and Civiš, S. (2010) A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-Vis spectrometry. Analyst, 135 (5): 1106–1114.
  • Shui, M., Sun, Y., Zhao, Z., Cheng, K., Xiong, Y., Wu, Y., Fan, W., Yu, J., Yan, Y., and Yang, Z. (2013) Photothermal decomposition of HNS at 532nm. Optik, 124 (23): 6115–6118.
  • Sun, Y., Xu, T., Shu, Y., and Zhong, F. (2013) UV-induced photodecomposition of 2,2′,4,4′,6,6′-hexanitrostillbene (HNS). Mater. Sci.. , 31 (3): 306–311.
  • Zhao, X., Hintsa, E.J., and Lee, Y.T. (1988) Infrared multiphoton dissociation of RDX in a molecular beam. J. Chem. Phys., 88. (2): 801–810.
  • Capellos, C., Papagiannakopoulos, P., and Liang, Y.-L. (1989) The 248 nm photodecomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine. Chem. Phys. Lett., 164 (5): 533–538.
  • Maharrey, S. and Behrens, R. (2005) Thermal decomposition of energetic materials. 5. Reaction processes of 1,3,5-trinitrohexahydro-s-triazine below its melting point. J. Phys. Chem. A, 109 (49): 11236–11249.
  • Tang, T.B., Chaudhri, M., Rees, C.S., and Mullock, S. (1987) Decomposition of solid explosives by laser irradiation: A mass spectrometric study. J. Mater. Sci., 22 (3): 1037–1044.
  • Botcher, T.R. and Wight, C.A. (1994) Explosive thermal decomposition mechanism of RDX. J. Phys. Chem., 98 (21): 5441–5444.
  • Fried, L.E., Manaa, M.R., and Lewis, J.P. (2005) Modeling the reactions of energetic materials in the condensed phase. Overviews of recent research on energetic materials. Adv. Ser. Phys. Chem., 16: . 275–310.
  • Greenfield, M. (2007). Excited electronic state decomposition mechanisms and dynamics of nitramine energetic materials and model systems. Ph.D Thesis, Colorado State University, Fort Collins, CO.
  • Okovytyy, S., Kholod, Y., Qasim, M., Fredrickson, H., and Leszczynski, J. (2005) The mechanism of unimolecular decomposition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. A computational DFT study. J. Phys. Chem. A, 109 (12): 2964–2970.
  • Hawari, J., Deschamps, S., Beaulieu, C., Paquet, L., and Halasz, A. (2004) Photodegradation of CL-20: Insights into the mechanisms of initial reactions and environmental fate. Water Res., 38 (19): 4055–4064.
  • Ryzhkov, L.R. and McBride, J.M. (1997) Structure, motion, and exchange coupling of 15NO2/15NO2 radical pairs occupying adjacent solvent cavities of α-HNIW, a nitramine hydrate. J. Am. Chem. Soc., 119 (21): 4826–4833.
  • Pace, M.D. (1991) EPR spectra of photochemical nitrogen dioxide formation in monocyclic nitramines and hexanitrohexaazaisowurtzitane. J. Chem. Phys., 95 (15): 5858–5864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.