3,968
Views
181
CrossRef citations to date
0
Altmetric
Reviews

Review of Fluorescence Suppression Techniques in Raman Spectroscopy

, &

References

  • Gardiner, D.J. (1989) Practical Raman Spectroscopy. Springer-Verlag: Berlin, Germany.
  • Lakowicz, J.R. (2006) Principles of Fluorescence Spectroscopy. 3rd ed. Springer: New York.
  • Kohl, I., Winkel, K., Bauer, M., Liedl, K.R., Loerting, T., and Mayer, E. (2009) Raman spectroscopic study of the phase transition of amorphous to crystalline beta-carbonic acid. Angew. Chem. Int. Ed., 48 (15): 2690–2694.
  • Kobayashi, M., Kaneko, F., Sato, K., and Suzuki, M. (1986) Vibrational spectroscopic study on polymorphism and order-disorder phase-transition in oleic-acid. J. Phys. Chem., 90 (23): 6371–6378.
  • Taylor, L.S. and Zografi, G. (1998) The quantitative analysis of crystallinity using FT-Raman spectroscopy. Pharmaceut. Res., 15 (5): 755–761.
  • Ong, Y.H., Lim, M., and Liu, Q. (2012) Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. Optic. Express, 20 (22): 25041–25043.
  • Ojeda, J.F., Xie, C.G., Li, Y.Q., Bertrand, F.E., Wiley, J., and McConnell, T.J. (2006) Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy. Optic. Express, 14 (12): 5385–5393.
  • Wood, B.R., Tait, B. and McNaughton, D. (2001) Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte. Biochim. Biophys. Acta Mol. Cell Res., 1539 (1–2): 58–70.
  • Yuen, C. and Liu, Q. (2012) Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis. J. Biomed. Optic., 17 (1): 017005
  • Webster, G.T., Tilley, L., Deed, S., McNaughton, D., and Wood, B.R. (2008) Resonance Raman spectroscopy can detect structural changes in haemozoin (malaria pigment) following incubation with chloroquine in infected erythrocytes. FEBS Lett., 582 (7): 1087–1092.
  • Andrade, P.O., Bitar, R.A., Yassoyama, K., Martinho, H., Santo, A.M.E., Bruno, P.M., and Martin, A.A. (2007) Study of normal colorectal tissue by FT-Raman spectroscopy. Anal. Bioanal. Chem., 387 (5): 1643–1648.
  • Bitar, R.A., Martinho, H.D.S., Tierra-Criollo, C.J., Ramalho, L.N.Z., Netto, M.M., and Martin, A.A. (2006) Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy. J. Biomed. Optic., 11 (5): 054001.
  • Krishna, C.M., Prathima, N.B., Malini, R., Vadhiraja, B.M., Bhatt, R.A., Fernandes, D.J., Kushtagi, P., Vidyasagar, M.S., and Kartha, V.B. (2006) Raman spectroscopy studies for diagnosis of cancers in human uterine cervix. Vib. Spectros., 41 (1): 136–141.
  • Carden, A. and Morris, M.D. (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J. Biomed. Optic., 5 (3): 259–268.
  • Martins, M.A.D., Ribeiro, D.G., dos Santos, E.A.P., Martin, A.A., Fontes, A., and Martinho, H.D. (2010) Shifted-excitation Raman difference spectroscopy for in vitro and in vivo biological samples analysis. Biomed. Optic. Express, 1 (2): 617–626.
  • Kostamovaara, J., Tenhunen, J., Kogler, M., Nissinen, I., Nissinen, J., and Keranen, P. (2013) Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD. Optic. Express, 21 (25): 31632–31645.
  • Hanlon, E.B., Manoharan, R., Koo, T.W., Shafer, K.E., Motz, J.T., Fitzmaurice, M., Kramer, J.R., Itzkan, I., Dasari, R.R., and Feld, M.S. (2000) Prospects for in vivo Raman spectroscopy. Phys. Med. Biol., 45 (2): R1–R59.
  • Burgess, S. and Shepherd, I.W. (1977) Fluorescence suppression in time-resolved Raman-spectra. J. Phys. E Sci. Instrum., 10 (6): 617–620.
  • Ariese, F., Meuzelaar, H., Kerssens, M.M., Buijs, J.B., and Gooijer, C. (2009) Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media. Analyst, 134 (6): 1192–1197.
  • Goncharov, A.F. and Crowhurst, J.C. (2005) Pulsed laser Raman spectroscopy in the laser-heated diamond anvil cell. Rev. Sci. Instrum., 76 (6): 063905.
  • Genack, A.Z. (1985) Electro-optic phase-sensitive detection of optical-emission and scattering. Appl. Phys. Lett., 46 (4): 341–343.
  • Demas, J.N. and Keller, R.A. (1985) Enhancement of luminescence and Raman-spectroscopy by phase-resolved background suppression. Anal. Chem., 57 (2): 538–545.
  • Wirth, M.J. and Chou, S.H. (1988) Comparison of time and frequency-domain methods for rejecting fluorescence from Raman-spectra. Anal. Chem., 60 (18): 1882–1886.
  • Shreve, A.P., Cherepy, N.J., and Mathies, R.A. (1992) Effective rejection of fluorescence interference in Raman-spectroscopy using a shifted excitation difference technique. Appl. Spectros., 46 (4): 707–711.
  • Hasegawa, T., Nishijo, J., and Umemura, J. (2000) Separation of Raman spectra from fluorescence emission background by principal component analysis. Chem. Phys. Lett., 317 (6): 642–646.
  • Zhao, J., Lui, H., McLean, D.I. and Zeng, H. (2007) Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectros., 61 (11): 1225–1232.
  • Lieber, C.A. and Mahadevan-Jansen, A. (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectros., 57 (11): 1363–1367.
  • Mosierboss, P.A., Lieberman, S.H., and Newbery, R. (1995) Fluorescence rejection in Raman-spectroscopy by shifted-spectra, edge-detection, and FFT filtering techniques. Appl. Spectros., 49 (5): 630–638.
  • Zhang, D.M. and Ben-Amotz, D. (2000) Enhanced chemical classification of Raman images in the presence of strong fluorescence interference. Appl. Spectros., 54 (9): 1379–1383.
  • Yuen, C. and Liu, Q. (2013) Towards in vivo intradermal surface enhanced Raman scattering (SERS) measurements: Silver coated microneedle based SERS probe. J. Biophoton., 2013: 683–689.
  • Campion, A. and Kambhampati, P. (1998) Surface-enhanced Raman scattering. Chem. Soc. Rev., 27 (4): 241–250.
  • Dong, L., Ye, F., Hu, J., Popov, S., Friberg, A.T. and Muhammed, M. (2011) Fluorescence quenching and photobleaching in Au/Rh6G nanoassemblies: Impact of competition between radiative and non-radiative decay. J. Eur. Opt. Soc., 6: 11019.
  • Morris, M.D. (1979) Resonance Raman-spectroscopy—Current applications and prospects. Anal. Chem., 51 (2): 182A–192A.
  • Efremov, E.V., Ariese, F., and Gooijer, C. (2008) Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal. Chim. Acta, 606 (2): 119–134.
  • Robert, B. (2009) Resonance Raman spectroscopy. Photosynth. Res., 101 (2–3): 147–155.
  • Evans, C.L. and Xie, X.S. (2008) Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine. Annu. Rev. Anal. Chem., 1: 883–909.
  • Kukura, P., McCamant, D.W., and Mathies, R.A. (2007) Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem., 58: 461–488.
  • Angel, S.M., Dearmond, M.K., Hanck, K.W., and Wertz, D.W. (1984) Computer-controlled instrument for the recovery of a resonance Raman-spectrum in the presence of strong luminescence. Anal. Chem., 56 (14): 3000–3001.
  • Cormack, I.G., et al. (2007) Fluorescence suppression within Raman spectroscopy using annular beam excitation. Appl. Phys. Lett., 91 (2): 023903.
  • Schulmerich, M.V., et al. (2010) Dark field Raman microscopy. Anal. Chem., 82 (14): 6273–6280.
  • Hamaguchi, H., Tahara, T., and Tasumi, M. (1987) Suppression of luminescence background in Raman-spectroscopy by means of transient optical depletion of causal impurity molecules. Appl. Spectros., 41 (8): 1265–1268.
  • Macdonald, A.M. and Wyeth, P. (2006) On the use of photobleaching to reduce fluorescence background in Raman spectroscopy to improve the reliability of pigment identification on painted textiles. J. Raman Spectros., 37 (8): 830–835.
  • Sahoo, S.K., Umapathy, S., and Parker, A.W. (2011) Time-resolved resonance Raman spectroscopy: Exploring reactive intermediates. Appl. Spectros., 65 (10): 1087–1115.
  • Becker, W. (2012) Fluorescence lifetime imaging—Techniques and applications. J. Microsc., 247 (2): 119–136.
  • Matousek, P., Towrie, M., Stanley, A., and Parker, A.W. (1999) Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating. Appl. Spectros., 53 (12): 1485–1489.
  • Watanabe, J., Kinoshita, S., and Kushida, T. (1985) Fluorescence rejection in Raman-spectroscopy by a gated single-photon counting method. Rev. Sci. Instrum., 56 (6): 1195–1198.
  • Martyshkin, D.V., Ahuja, R.C., Kudriavtsev, A., and Mirov, S.B. (2004) Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera. Rev. Sci. Instrum., 75 (3): 630–635.
  • Efremov, E.V., Buijs, J.B., Gooijer, C., and Ariese, F. (2007) Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera. Appl. Spectros., 61 (6): 571–578.
  • Tahara, T. and Hamaguchi, H.O. (1993) Picosecond Raman-spectroscopy using a streak camera. Appl. Spectros., 47 (4): 391–398.
  • Matousek, P., et al. (2001) Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. J. Raman Spectros., 32 (12): 983–988.
  • Morris, M.D., Matousek, P., Towrie, M., Parker, A.W., Goodship, A.E., and Draper, E.R.C. (2005) Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue. J. Biomed. Optic., 10 (1): 014014.
  • Everall, N., Hahn, T., Matousek, P., Parker, A.W., and Towrie, M. (2001) Picosecond time-resolved Raman spectroscopy of solids: Capabilities and limitations for fluorescence rejection and the influence of diffuse reflectance. Appl. Spectros., 55 (12): 1701–1708.
  • Sinfield, J.V., Colic, O., Fagerman, D., and Monwuba, C. (2010) A low cost time-resolved Raman spectroscopic sensing system enabling fluorescence rejection. Appl. Spectros., 64(2): 201–210.
  • Litwiller, D. (2002) CCD vs. CMOS: The battle cools off. Photon. Spectra, 36 (1): 102–103.
  • Zlatanski, M., Uhring, W., Le Normand, J.P., Zint, C.V., and Mathiot, D. (2010) Streak camera in standard (Bi)CMOS (bipolar complementary metal-oxide-semiconductor) technology. Meas. Sci. Tech., 21 (11): 115203–115214.
  • Hain, R., Kahler, C.J., and Tropea, C. (2007) Comparison of CCD, CMOS and intensified cameras. Exp. Fluid., 42 (3): 403–411.
  • Bright, F.V. and Hieftje, G.M. (1986) A new technique for the elimination of fluorescence interference in Raman-spectroscopy. Appl. Spectros., 40 (5): 583–587.
  • Rusciano, G., De Luca, A.C., Sasso, A., and Pesce, G. (2006) Phase-sensitive detection in Raman tweezers. Appl. Phys. Lett., 89 (26): 261116.
  • Rusciano, G., De Luca, A.C., Sasso, A. and Pesce, G. (2007) Enhancing Raman tweezers by phase-sensitive detection. Anal. Chem., 79 (10): 3708–3715.
  • Genack, A.Z. (1984) Fluorescence suppression by phase-resolved modulation Raman-scattering. Anal. Chem., 56 (14): 2957–2960.
  • Bright, F.V. (1988) Multicomponent suppression of fluorescent interferants using phase-resolved Raman-spectroscopy. Anal. Chem., 60 (15): 1622–1623.
  • Jameson, D.M., Gratton, E., and Hall, R.D. (1984) The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry. Appl. Spectros. Rev., 20 (1): 55–106.
  • Kasha, M. (1950) Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc., 1950 (9): 14–19.
  • McCain, S.T., Willett, R.M., and Brady, D.J. (2008) Multi-excitation Raman spectroscopy technique for fluorescence rejection. Optic. Express, 16 (15): 10975–10991.
  • Zhao, J., Carrabba, M.M., and Allen, F.S. (2002) Automated fluorescence rejection using shifted excitation Raman difference spectroscopy. Appl. Spectros., 56 (7): 834–845.
  • Matousek, P., Towrie, M., and Parker, A.W. (2005) Simple reconstruction algorithm for shifted excitation Raman difference spectroscopy. Appl. Spectros., 59 (6): 848–851.
  • Sowoidnich, K. and Kronfeldt, H.D. (2012) Shifted excitation Raman difference spectroscopy at multiple wavelengths for in-situ meat species differentiation. Appl. Phys. B Laser. Optic., 108 (4): 975–982.
  • Maiwald, M., M., Schmidt, H., Sumpf, B., Erbert, G., Kronfeldt, H.D., and Trankle, G. (2009) Microsystem 671 nm light source for shifted excitation Raman difference spectroscopy. Appl. Optic., 48 (15): 2789–2792.
  • Maiwald, M., et al. (2009) Microsystem light source at 488 nm for shifted excitation resonance Raman difference spectroscopy. Appl. Spectros., 63 (11): 1283–1287.
  • Cooper, J.B., Abdelkader, M., and Wise, K.L. (2013) Sequentially shifted excitation Raman spectroscopy: Novel algorithm and instrumentation for fluorescence-free Raman spectroscopy in spectral space. Appl. Spectros., 67 (8): 973–984.
  • Adami, R. and Kiefer, J. (2013) Light-emitting diode based shifted-excitation Raman difference spectroscopy (LED-SERDS). Analyst, 138 (21): 6258–6261.
  • Matousek, P., Towrie, M., and Parker, A.W. (2002) Fluorescence background suppression in Raman spectroscopy using combined Kerr gated and shifted excitation Raman difference techniques. J. Raman Spectros., 33 (4): 238–242.
  • Xie, C.G. and Li, Y.Q. (2003) Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques. J. Appl. Phys., 93 (5): 2982–2986.
  • Kwon, Y.H., Ossig, R., Hubenthal, F., and Kronfeldt, H.D. (2012) Influence of surface plasmon resonance wavelength on SERS activity of naturally grown silver nanoparticle ensemble. J. Raman Spectros., 43 (10): 1385–1391.
  • De Luca, A.C., Mazilu, M., Riches, A., Herrington, C.S., and Dholakia, K. (2010) Online fluorescence suppression in modulated Raman spectroscopy. Anal. Chem., 82 (2): 738–745.
  • Mazilu, M., De Luca, A.C., Riches, A., Herrington, C.S., and Dholakia, K. (2010) Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy. Optic. Express, 18 (11): 11382–11395.
  • Praveen, B.B., Mazilu, M., Marchington, R.F., Herrington, C.S., Riches, A., and Dholakia, K. (2013) Optimisation of wavelength modulated Raman spectroscopy: Towards high throughput cell screening. PLos One, 8 (6): e67211.
  • Dochow, S., Bergner, N., Krafft, C., Clement, J., Mazilu, M., Praveen, B.B., Ashok, P.C., Marchington, R., Dholakia, K., and Popp, J. (2013) Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation. Anal. Meth., 5 (18): 4608–4614.
  • Canetta, E., Mazilu, M., De Luca, A.C., Carruthers, A.E., Dholakia, K., Neilson, S., Sargeant, H., Briscoe, T., Herrington, C.S. and Riches, A.C. (2011) Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples. J. Biomed. Optic., 16 (3): 037002
  • Praveen, B.B., Steuwe, C., Mazilu, M., Dholakia, K., and Mahajan, S. (2013) Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection. Analyst, 138 (10): 2816–2820.
  • Bell, S.E.J., Bourguignon, E.S.O., and Dennis, A. (1998) Analysis of luminescent samples using subtracted shifted Raman spectroscopy. Analyst, 123 (8): 1729–1734.
  • Rosi, F., Paolantoni, M., Clementi, C., Doherty, B., Miliani, C., Brunetti, B.G., and Sgamellotti, A. (2010) Subtracted shifted Raman spectroscopy of organic dyes and lakes. J. Raman Spectros., 41 (4): 452–458.
  • Mazet, V., Carteret, C., Brie, D., Idier, J., and Humbert, B. (2005) Background removal from spectra by designing and minimising a non-quadratic cost function. Chemometr. Intell. Lab. Syst., 76 (2): 121–133.
  • Galloway, C.M., Le Ru, E.C., and Etchegoin, P.G. (2009) An iterative algorithm for background removal in spectroscopy by wavelet transforms. Appl. Spectros., 63 (12): 1370–1376.
  • Hu, Y.G., Jiang, T., Shen, A.G., Li, W., Wang, X.P. and Hu, J.M. (2007) A background elimination method based on wavelet transform for Raman spectra. Chemometr. Intell. Lab. Syst., 85 (1): 94–101.
  • Ramos, P.M. and Ruisanchez, I. (2005) Noise and background removal in Raman spectra of ancient pigments using wavelet transform. J. Raman Spectros., 36 (9): 848–856.
  • O'Grady, A., Dennis, A.C., Denvir, D., McGarvey, J.J., and Bell, S.E.J. (2001) Quantitative Raman spectroscopy of highly fluorescent samples using pseudosecond derivatives and multivariate analysis. Anal. Chem., 73 (9): 2058–2065.
  • Leger, M.N. and Ryder, A.G. (2006) Comparison of derivative preprocessing and automated polynomial baseline correction method for classification and quantification of narcotics in solid mixtures. Appl. Spectros., 60 (2): 182–193.
  • Cao, A., Pandya, A.K., Serhatkulu, G.K., Weber, R.E., Dai, H., Thakur, J.S., Naik, V.M., Naik, R., Auner, G.W., Rabah, R., and Freeman, D.C. (2007) A robust method for automated background subtraction of tissue fluorescence. J. Raman Spectros., 38 (9): 1199–1205.
  • Schulze, G., Jirasek, A., Yu, M.M.L., Lim, A., Turner, R.F.B., and Blades, M.W. (2005) Investigation of selected baseline removal techniques as candidates for automated implementation. Appl. Spectros., 59 (5): 545–574.
  • Baek, S.J., Park, A., Kim, J., Shen, A.G., and Hu, J.M. (2009) A simple background elimination method for Raman spectra. Chemometr. Intell. Lab. Syst., 98 (1): 24–30.
  • Zhang, Z.M., Chen, S., Liang, Y.Z., Liu, Z.X., Zhang, Q.M., Ding, L.X., Ye, F., and Zhou, H. (2010) An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy. J. Raman Spectros., 41 (6): 659–669.
  • Palacky, J., Mojzes, P., and Bok, J. (2011) SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations. J. Raman Spectros., 42 (7): 1528–1539.
  • Jirasek, A., Schulze, G., Yu, M.M.L., Blades, M.W., and Turner, R.F.B. (2004) Accuracy and precision of manual baseline determination. Appl. Spectros., 58 (12): 1488–1499.
  • McCreery, R.L. (2000) Raman Spectroscopy for Chemical Analysis. Wiley-Interscience: New York.
  • Zięba-Palus, J. and Michalska, A. (2014) Photobleaching as a useful technique in reducing of fluorescence in Raman spectra of blue automobile paint samples. Vib. Spectros., 74: 6–12.
  • Pelletier, M.J. and Altkorn, R. (2000) Efficient elimination of fluorescence background from Raman spectra collected in a liquid core optical fiber. Appl. Spectros., 54 (12): 1837–1841.
  • Matousek, P., Everall, N., Towrie, M., and Parker, A.W. (2005) Depth profiling in diffusely scattering media using Raman spectroscopy and picosecond Kerr gating. Appl. Spectros., 59 (2): 200–205.
  • Osticioli, I., Zoppi, A., and Castellucci, E.M. (2007) Shift-excitation Raman difference spectroscopy-difference deconvolution method for the luminescence background rejection from Raman spectra of solid samples. Appl. Spectros., 61 (8): 839–844.
  • Berezin, M.Y. and Achilefu, S. (2010) Fluorescence lifetime measurements and biological imaging. Chem. Rev., 110 (5): 2641–2684.
  • Tadrous, P.J., Siegel, J., French, P.M., Shousha, S., Lalani el, N., and Stamp, G.W. (2003) Fluorescence lifetime imaging of unstained tissues: Early results in human breast cancer. J Pathol., 199 (3): 309–317.
  • Chen, S., Ong, Y.H., and Liu, Q. (2013) Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation. J. Raman Spectros., 44 (6): 875–881.
  • Pulgarin, J.A.M., Bermejo, L.F.G., and Rodriguez, S.B. (2013) Direct determination of gibberellic acid in tomato and fruit by using photochemically induced fluorescence. J. Agr. Food Chem., 61 (41): 9769–9775.
  • Ryvolova, M., Taborsky, P., Vrabel, P., Krasensky, P., and Preisler, J. (2007) Sensitive determination of erythrosine and other red food colorants using capillary electrophoresis with laser-induced fluorescence detection. J. Chrom., 1141 (2): 206–211.
  • Barberia, E., Maroto, M., Arenas, M., and Silva, C.C. (2008) A clinical study of caries diagnosis with a laser fluorescence system. J. Am. Dent. Assoc., 139 (5): 572–579.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.