1,409
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Detection and identification of explosives by surface enhanced Raman scattering

, &

References

  • Marshall, M. and Oxley, J. (2009) Aspects of Explosives Detection. Elsevier: Netherlands.
  • Bailey, A. and Murray, S.G. (2000) Explosives, Propellants and Pyrotechnics. Brassey's: London, UK.
  • Yinon, J. (2007) Counterterrorist Detection Techniques of Explosives. Elsevier: Netherlands.
  • Hwang, J., Choi, N., Park, A., Park, J., Chung, J.H., Baek, S., Cho, S.G., Baek, S., and Choo, J. (2013) Fast and sensitive recognition of various explosive compounds using Raman spectroscopy and principal component analysis. J. Mol. Struc., 1039: 130–136.
  • Moros, J., Lorenzo, J.A., Novotný, K., and Laserna, J.J. (2013) Fundamentals of stand-off Raman scattering spectroscopy for explosive fingerprinting. J. Raman Spectrosc., 44: 121–130.
  • Almaviva, S., Botti, S., Cantarini, L., Palucci, A., Schnuerer, F., Schweikert, W., and Romolo, F.S. (2013) Raman spectroscopy for the detection of explosives and their precursors on clothing in fingerprint concentration: a reliable technique for security and counterterrorist issues. Proc. SPIE, 8901: 890102/1–890102/9.
  • López-López, M. and García-Ruiz, C. (2014) Infrared and Raman spectroscopy techniques applied to identification of explosives. Trends Anal. Chem., 54: 36–44.
  • López-López, M., Ferrando, J.L., and García-Ruiz, C. (2013) Dynamite analysis by Raman spectroscopy as a unique analytical tool. Anal. Chem., 85: 2595–2600.
  • Ali, E.M.A., Edwards, H.G.M., Hargreaves, M.D., and Scowen I.J. (2009) Detection of explosives on human nail using confocal Raman microscopy. J. Raman Spectrosc., 40: 144–149.
  • Pacheco-Londoño, L.C., Ortiz-Rivera, W., Primera-Pedrozo, O.M., and Hernández-Rivera, S.P. (2009) Vibrational spectroscopy standoff detection of explosives. Anal. Bioanal. Chem., 395: 323–335.
  • Docherty, F.T., Monaghan, P.B., McHugh, C.J., Graham, D., Smith, W.E., and Cooper, J.M. (2005) Simultaneous multianalyte identification of molecular species involved in terrorism using Raman spectroscopy. IEEE Sens. J., 5: 632–640.
  • Aoki, P.H.B., Furini, L.N., Alessio, P., Aliaga, A.E., and Constantino, C.J.L. (2013) Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Rev. Anal. Chem., 32: 55–76.
  • Kneipp, K., Kneipp, H., Itzkan, I., Dasary, R.R. and Feld, M.S. (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev., 99: 2957–2975.
  • McQuillan, A.J. (2009) The discovery of surface-enhanced Raman scattering. Notes Rec. R. Soc., 63: 105–109.
  • Fleischmann, M., Hendra, P.J., and McQuillan, A.J. (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 26: 163–166.
  • Golightly, R.S., Doering, W.E., and Natan, M.J. (2009) Surface-enhanced Raman spectroscopy and homeland security: a perfect match? ACS Nano, 3: 2859–2869.
  • Kneipp, K., Wang, Y., Dasari, R.R., Feld, M.S., Gilbert, B.D., Janni, J., and Steinfeld, J.I. (1995) Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver. Spectrochim. Acta A, 51: 2171–2175.
  • Haas, J.W., Sylvia, J.M., Spencer, K.M., Johnston, T.M., and Clauson, S.L. (1998) Surface-enhanced Raman sensor for nitroexplosive vapors. Proc. SPIE, 3392: 469–476.
  • Jerez-Rozo, J.I., Chamoun, A.M., Peña, S.L., and Hernández-Rivera, S.P. (2007) Enhanced Raman Scattering of TNT on Nanoparticle Substrates: Ag Colloids Prepared by Reduction with Hydroxylamine Hydrochloride and Sodium Citrate. Proc. SPIE, 6538: 653824/1–653824/12.
  • Jerez-Rozo, J.I., Primera-Pedrozo, O.M., Barreto-Cabán, M.A., and Hernández-Rivera, S.P. (2008) Enhanced Raman scattering of 2,4,6-TNT using metallic colloids. IEEE Sensors J., 8: 974–982.
  • Lee, P.C. and Meisel, D. (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem., 86: 3391–3395.
  • Leopold, N. and Lendl, B. (2003) A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B, 107: 5723–5727.
  • Zhang, C., Wang, K., Han, D., and Pang, Q. (2014) Surface enhanced Raman scattering (SERS) spectra of trinitrotoluene in silver colloids prepared by microwave heating method. Spectrochim. Acta A, 122: 387–391.
  • Sil, S., Chaturvedi, D., Krishnappa, K.B., Kumar, S., Asthana, S.N., and Umapathy, S. (2014) Density functional theoretical modeling, electrostatic surface potential and surface enhanced Raman spectroscopic studies on biosynthesized silver nanoparticles: observation of 400 pM sensitivity to explosives. Phys. Chem. A, 118: 2904–2914.
  • Fierro-Mercado, P.M. and Hernández-Rivera, S.P. (2012) Highly sensitive filter paper substrate for SERS trace explosives detection. Int. J. Spectrosc., 716527.
  • Calzzani, F.A., Sileshi, R., Kassu, A., Taguenang, J.M., Chowdhury, A., Sharma, A., Ruffin, P.B., Brantley, C., and Edwards, E. (2008) Detection of residual traces of explosives by surface enhanced Raman scattering using gold coated substrates produced by nanospheres imprint technique. Proc. SPIE, 6945: 694510/1–694510/9.
  • Botti, S., Cantarini, L., and Palucci, A. (2010) Surface-enhanced Raman spectroscopy for trace-level detection of explosives. J. Raman Spectrosc., 41: 866–869.
  • Botti, S., Carpanese, M., Cantarini, L., Giubileo, G., Lazic, V., Jovicevic, S., Palucci, A., and Puiu, A. (2010) Trace detection of explosive compounds by different laser-based techniques at the ENEA laboratories. Proc. SPIE, 7665: 766500/1–766500/12.
  • Almaviva, S., Botti, S., Cantarini, L., Palucci, A., Puiu, A., Rufoloni, A., Landström, L., and Romolo, F.S. (2012) Trace detection of explosives by surface enhanced Raman spectroscopy. Proc. SPIE, 8546: 854602/1–854602/7.
  • Botti, S., Almaviva, S., Cantarini, L., Palucci, A., Puiu, A., and Rufoloni, A. (2013) Trace level detection and identification of nitro-based explosives by surface-enhanced Raman spectroscopy. J. Raman Spectrosc., 44: 463–468.
  • Botti, S., Cantarini, L., Almaviva, S., Puiu, A., and Rufoloni, A. (2014) Assessment of SERS activity and enhancement factors for highly sensitive gold coated substrates probed with explosive molecules. Chem. Phys. Lett., 592: 277–281.
  • Almaviva, S., Botti, S., Cantarini, L., Fantoni, R., Lecci, S., Palucci, A., Puiu, A., and Rufoloni, A. (2014) Ultrasensitive RDX detection with commercial SERS substrates. J. Raman Spectrosc., 45: 41–46.
  • Yang, L., Ma, L., Chen, G., Liu, J., and Tian, Z. Q. (2010) Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chem. Eur. J., 16: 12683–12693.
  • Holthoff, E.L., Stratis-Cullum, D.N., and Hankus, M.E. (2010) Xerogel-based molecularly imprinted polymers for explosives detection. Proc. SPIE, 7665: 76650W/1–76650W/9.
  • Holthoff, E.L., Stratis-Cullum, D.N., and Hankus, M.E. (2011) A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering. Sensors, 11: 2700–2714.
  • Dasary, S.S.R., Singh, A.K., Senapati, D., Yu, H., and Ray, P.C. (2009) Gold nanoparticle based label-Free SERS probe for ultrasensitive and selective detection of trinitrotoluene. JACS, 131: 13806–13812.
  • Glembocki, O.J., Gowda, M., Geng, S., Prokes, S.M., Garces, N.Y., Cushen, J., and Caldwell, J.D. (2010) Cysteamine coated Ag and Au nanorods for improved surface enhanced Raman scattering form dinitrotoluene and trinitrotoluene. Proc. SPIE, 7757: 77570I/1–77570I/9.
  • Zhou, H., Zhang, Z., Jiang, C., Guan, G., Zhang, K., Mei, Q., Liu, R., and Wang, S. (2011) Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array. Anal. Chem., 83: 6913–6917.
  • Liu, X., Zhao, L., Shen, H., Xu, H., and Lu, L. (2011) Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives. Talanta, 83: 1023–1029.
  • Xu, J.Y., Wang, J., Kong, L.T., Zheng, G.C., Guo, Z., and Liu, J.H. (2011) SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms. J. Raman Spectrosc., 42: 1728–1735.
  • Liu, M. and Chen, W. (2013) Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens. Bioelectron., 46: 68–73.
  • He, X., Wang, H., Li, Z., Chen, D., and Zhang, Q. (2014) ZnO-Ag hybrids for ultrasensitive detection of trinitrotoluene by surface-enhanced Raman spectroscopy. Phys. Chem. Chem. Phys., 16: 14706–14712.
  • Cruz-Montoya, E., Blanco, A., Balaguera-Gelves, M., Pacheco-Londoño, L., and Hernández-Rivera, S.P. (2005) Surface Enhanced Raman Scattering of Nitroexplosives on non traditional substrates. Proc. SPIE, 5778: 359–367.
  • Cruz-Montoya, E. (2005) Surface enhanced Raman scattering of nitro explosives on titanium oxide substrates, Abstracts of Papers, 230th ACS National Meeting, Washington, DC, United States, Aug. 28–Sept. 1, 2005. Pages: COLL-208.
  • Jeréz-Rozo, J.I., Balaguera, M.R., Cabanzo, A., Cruz-Montoya, E., and Hernández-Rivera, S.P. (2006) Enhanced Raman scattering of nitro-explosives on nanoparticles substrates: Au-Ag alloy, tin oxide, and scandium oxide. Proc. SPIE, 6201: 62012G/1–62012G/8.
  • Cruz-Montoya, E., Jeréz, J.I., Balaguera-Gelves, M., Luna-Pineda, T., Castro, M.E., and Hernández-Rivera, S.P. (2006) Enhanced Raman spectroscopy of 2,4,6-TNT in anatase and rutile titania nanocrystals. Proc. SPIE, 6203: 62030X/—62030X/7.
  • Primera-Pedrozo, O.M., Jerez-Rozo, J.I., Cruz-Montoya, E., Luna-Pineda, T., Pacheco-Londoño, L.C., and Hernández-Rivera, S.P. (2008) Nanotechnology-based detection of explosives and biological agents simulants. IEEE Sens., 8: 963–973.
  • Hernández-Rivera, S.P., Briano, J.G., Cruz-Montoya, E., Perez-Acosta, G.A., and Jerez-Rozo, J.I. (2009) Enhanced Raman scattering of nitro-explosives on metal oxides and Ag/TiO2 nanoparticles. ACS Symposium Series, 1016: Nanoscience and Nanotechnology for Chemical and Biological Defense, 205–216.
  • Shao, M.W., Lu, L., Wang, H., Wang, S., Zhang, M.L., Ma, D., and Lee, S.T. (2008) An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from β-silver vanadate and copper. Chem. Commun., 20: 2310–2312.
  • Ko, H. and Tsukruk, V.V. (2008) Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering. Small, 4: 1980–1984.
  • Ko, H., Chang, S., and Tsukruk, V.V. (2009) Porous substrates for label-free molecular level detection of nonresonant organic molecules. ACS Nano, 3: 181–188.
  • Sajanlal, P.R. and Pradeep, T. (2012) Functional hybrid nickel nanostructures as recyclable SERS substrates: detection of explosives and biowarfare agents. Nanoscale, 4: 3427–3437.
  • Demeritte, T., Kanchanapally, R., Fan, Z., Singh, A. K., Senapati, D., Dubey, M., Zakar, E., and Ray, P.C. (2012) Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid. Analyst, 137: 5041–5045.
  • Talian, I. and Huebner, J. (2013) Separation followed by direct SERS detection of explosives on a novel black silicon multifunctional nanostructured surface prepared in a microfluidic channel. J. Raman Spectrosc., 44: 536–539.
  • Kanchanapally, R., Sinha, S.S., Fan, Z., Dubey, M., Zakar, E., and Ray, P.C. (2014) Graphene oxide-gold nanocage hybrid platform for trace level identification of nitro explosives using a Raman fingerprint. J. Phys. Chem. C, 118: 7070–7075.
  • Mahmoud, K.A. and Zourob, M. (2013) Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT). Analyst, 138: 2712–2719.
  • McHugh, C.J., Keir, R., Graham, D., and Smith, W.E. (2002) Selective functionalization of TNT for sensitive detection by SERRS. Chem. Comm., 2002: 580–581.
  • Keir, R., Igata, E., Arundell, M., Smith, W.E., Graham, D., McHugh, C., and Cooper, J. M. (2002) SERRS. In situ substrate formation and improved detection using microfluidics. Anal. Chem., 74: 1503–1508.
  • Liu, H., Lin, D., Sun, Y., Yang, L., and Liu, J. (2013) Cetylpyridinium chloride activated trinitrotoluene explosive lights up robust and ultrahigh surface-enhanced resonance Raman scattering in a silver sol. Chem. Eur. J., 19: 8789–8796.
  • Hatab, N.A., Eres, G., Hatzinger, P.B., and Gu, B. (2010) Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy. J. Raman Spectrosc., 41: 1131–1136.
  • Xu, Z., Hao, J., Braida, W., Strickland, D., Li, F., and Meng, X. (2011) Surface-enhanced Raman scattering spectroscopy of explosive 2,4-dinitroanisole using modified silver nanoparticles. Langmuir, 27: 13773–13779.
  • Xu, Z. and Meng, X. (2012) Detection of 3-nitro-1,2,4-triazol-3-one (NTO) by surface-enhanced Raman spectroscopy. Vibrat. Spectrosc., 63: 390–395.
  • Oxley, J., Smith, J., Brady, J., Dubnikova, F., Kosloff, R., Zeiri, L., and Zeiri, Y. (2008) Raman and infrared fingerprint spectroscopy of peroxide-based explosives. Appl. Spect., 62: 906–915.
  • Chang, S., Ko, H., Singamaneni, S., Gunawidjaja, R., and Tsukruk, V.V. (2009) Nanoporous membranes with mixed nanoclusters for Raman-based label-free monitoring of peroxide compounds. Anal. Chem., 81: 5740–5748.
  • Spencer, K.M., Sylvia, J.M., Janni, J.A., and Klein, J.D. (1999) Advances in landmine detection using surface-enhanced Raman spectroscopy. Proc. SPIE, 3710: 373–379.
  • Sylvia, J.M., Spencer, K.M., and Janni, J.A. (2000) Sniffing landmines with surface-enhanced Raman spectroscopy. JPAC, 146–147.
  • Sylvia, J.M., Janni, J.A., Klein, J.D., and Spencer, K.M. (2000) Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal. Chem., 72: 5834–5840.
  • Spencer, K.M., Sylvia, J.M., Marren, P.J., Bertone, J.F., and Christesen, S.D. (2004) Surface-enhanced Raman spectroscopy for homeland defense. Proc. SPIE, 5269: 1–8.
  • Gundrum, L., Hüttner, W. and Wackerbarth, H. (2010) Detection of explosives based on surface enhanced Raman spectroscopy, Application note, Laser-Laboratorium Göttingen, University of Göttingen, Germany.
  • Wackerbarth, H., Salb, C., Gundrum, L., Niederkrüger, M., Christou, K., Beushausen, V., and Viöl, W. (2010) Detection of explosives based on surface-enhanced Raman spectroscopy. Appl. Opt., 49: 4362–4366.
  • Wackerbarth, H., Gundrum, L., Salb, C., Christou, K,. and Viöl, W. (2010) Challenge of false alarms in nitroaromatic explosive detection—a detection device based on surface-enhanced Raman spectroscopy. Appl. Opt 49: 4367–4371.
  • Wang, J., Yang, L., Boriskina, S., Yan, B., and Reinhard, B.M. (2011) Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays. Anal. Chem., 83: 2243–2249.
  • Oo, M.K.K., Chang, C.F., Sun, Y., and Fan, X. (2011) Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates. Analyst, 136: 2811–2817.
  • Piorek, B.D., Lee, S.J., Moskovits, M., and Meinhart, C.D. (2012) Free-surface microfluidics/surface-enhanced raman spectroscopy for real-time trace vapor detection of explosives. Anal. Chem., 84: 9700–9705.
  • Chou, A., Jaatinen, E., Buividas, R., Seniutinas, G., Juodkazis, S., Izake, E.L., and Fredericks, P.M. (2012) SERS substrate for detection of explosives. Nanoscale, 4: 7419–7424.
  • Büttner, F., Hagemann, J., Wellhausen, M., Funke, S., Lenth, C., Rotter, F., Gundrum, L., Plachetka, U., Moormann, C., Strube, M., Walte, A., and Wackerbarth, H. (2013) Surface enhanced vibrational spectroscopy for the detection of explosives. Proc. SPIE, 8896: 889609/1–889609/12.
  • Wang, J., Yang, L., Liu, B., Jiang, H., Liu, R., Yang, J., Han, G., Mei, Q., and Zhang, Z. (2014) Inkjet-printed silver nanoparticle paper detects airborne species from crystalline explosives and their ultratrace residues in open environment. Anal. Chem., 86: 3338–3345.
  • Fang, X. and Ahmad, S.R. (2009) Detection of explosive vapor using surface-enhanced Raman spectroscopy. Appl. Phys. B, 97: 723–726.
  • Spencer, K.M., Clauson, S.L., and Sylvia, J.M. (2011) Development of a fieldable rugged TATP surface-enhanced Raman spectroscopy sensor. Proc. SPIE, 8032: 80320L/1–80320L/9.
  • Niaura, G. and Malinauskas, A. (1998) Surface-enhanced Raman spectroscopy of ClO4− and SO42− anions adsorbed at a Cu electrode. J. Chem. Soc. Faraday Trans 94: 2205–2211.
  • Mosier-Boss, P.A. and Lieberman, S.H. (2003) Detection of anions by normal Raman spectroscopy and surface-enhanced Raman spectroscopy of cationic-coated substrates. Appl. Spect., 57: 1129–1137.
  • Gu, B., Tio, J., Wang, W., Ku, Y.K., and Dai, S. (2004) Raman spectroscopic detection for perchlorate at low concentrations. Appl. Spect., 58: 741–744.
  • Wang, W. and Gu, B. (2005) New surface-enhanced Raman spectroscopy substrates via self-assembly of silver nanoparticles for perchlorate detection in water. Appl. Spect., 59: 1509–1515.
  • Ruan, C., Wang, W., and Gu, B. (2006) Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles. Anal. Chim. Acta, 567: 114–120.
  • Wang, W., Ruan, C., and Gu, B. (2006) Development of gold-silica composite nanoparticles substrates for perchlorate detection by surface-enhanced Raman spectroscopy. Anal. Chim. Acta, 567: 121–126.
  • Gu, B., Ruan, C., and Wang, W. (2009) Perchlorate detection at nanomolar concentrations by surface-enhanced Raman scattering. Appl. Spect., 63: 98–102.
  • Hao, J., Xu, Z., Han, M. J., Xu, S., and Meng, X. (2010) Surface-enhanced Raman scattering analysis of perchlorate using silver nanofilms deposited on copper foils. Colloids Surf. A, 366: 163–169.
  • Hao, J., Han, M.J., Li, J., and Meng, X. (2012) Surface modification of silver nanofilms for improved perchlorate Detection by surface-enhanced Raman scattering. J. Colloid Interf. Sci., 377: 51–57.
  • Nuntawong, N., Eiamchai, P., Limwichean, S., Wong-ek, B., Horprathum, M., Patthanasettakul, V., Leelapojanaporn, A., Nakngoenthong, S., and Chindaudom, P. (2013) Trace detection of perchlorate in industrial-grade emulsion explosive with portable surface-enhanced Raman spectroscopy. Forensic Sci. Int., 233: 174–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.