851
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Vibrational spectroscopic approaches for the quality evaluation and authentication of virgin olive oil

, , &

References

  • Huang, C. L., and Sumpio, B. E. (2008) Olive oil, the Mediterranean diet, and cardiovascular health. J. Am. Coll. Surgeons 207:407–416.
  • Dais, P., and Hatzakis, E. (2013) Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review. Anal. Chim. Acta. 765:1–27.
  • Blekas, G., Tsimidou, M., and Boskou, D. (1995) Contribution of α-tocopherol to olive oil stability. Food Chem. 52:289–294.
  • Gutfinger, T. (1981) Polyphenols in olive oils. J. Am. Oil Chem. Soc. 58:966–968.
  • Cañabate-Díaz, B., Carretero, A. S., Fernández-Gutiérrez, A., Vega, A. B., Frenich, A. G., Vidal, J. M., and Martos, J. D. (2007) Separation and determination of sterols in olive oil by HPLC-MS. Food Chem. 102:593–598.
  • Kalua, C., Allen, M., Bedgood, D., Bishop, A., Prenzler, P., and Robards, K. (2007) Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 100:273–286.
  • Kiritsakis, A. (1998) Flavor components of olive oil—A review. J. Am. Oil Chem. Soc. 75:673–681.
  • International Olive Oil Council (2001) COI/T.15/NC n. 2/rev. 4 (June 6), Madrid, 1996; COI/T.20/Doc no. 24, Madrid, 2001. http://www.internationaloliveoil.org/estaticos/view/224-testing-methods
  • European Community, Regulation (1989/2003) Off. J. European Comm. L295:57–58.
  • Ceci, L. N., and Carelli, A. A. (2007) Characterization of monovarietal Argentinian olive oils from new productive zones. J. Am. Oil Chem. Soc. 84:1125–1136.
  • Ferrer, C., Gómez, M. J., García-Reyes, J. F., Ferrer, I., Thurman, E. M., and Fernández-Alba, A. R. (2005) Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 1069:183–194.
  • Vichi, S., Castellote, A. I., Pizzale, L., Conte, L. S., Buxaderas, S., and López-Tamames, E. (2003) Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection. J. Chromatogr. A 983:19–33.
  • Nagy, K., Bongiorno, D., Avellone, G., Agozzino, P., Ceraulo, L., and Vékey, K. (2005) High performance liquid chromatography–mass spectrometry based chemometric characterization of olive oils. J. Chromatogr. A 1078:90–97.
  • Ahsan, H., Ahad, A., and Siddiqui, W. A. (2015) A review of characterization of tocotrienols from plant oils and foods. J. Chem. Biol. 8:45–59.
  • Gendrin, C., Roggo, Y., and Collet, C. (2008) Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review. J. Pharm. Biomed. Anal. 48:533–553.
  • Karoui, R., Downey, G., and Blecker, C. (2010) Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure− Quality relationships− A review. Chem. Rev. 110:6144–6168.
  • Hannah, R. W. (2002) Standard sampling techniques for infrared spectroscopy. In Handbook of vibrational spectroscopy Chalmers, J.M., Griffiths, P.R., Eds., vol. 2, John Wiley & Sons, London, pp. 933–952.
  • Reich, G. (2002) Potentialer einsatz von attenuated total reflection-infrarot-und nah-infrarot-bildgebungsverfahren in der qualitatssicherung fester arzneiformen. Pharm. Ind. 64:870–874.
  • Sherazi, S., Talpur, M. Y., Mahesar, S., Kandhro, A. A., and Arain, S. (2009) Main fatty acid classes in vegetable oils by SB-ATR-Fourier transform infrared (FTIR) spectroscopy. Talanta 80:600–606.
  • Jawaid, S., Talpur, F. N., Sherazi, S., Nizamani, S. M., and Khaskheli, A. A. (2013) Rapid detection of melamine adulteration in dairy milk by SB-ATR–Fourier transform infrared spectroscopy. Food Chem. 141:3066–3071.
  • Kim, Y., Himmelsbach, D. S., and Kays, S. E. (2007) ATR-Fourier transform mid-infrared spectroscopy for determination of trans fatty acids in ground cereal products without oil extraction. J. Agric. Food Chem. 55:4327–4333.
  • Cho, I. K., Kim, S., Khurana, H. K., Li, Q. X., and Jun, S. (2011) Quantification of trans fatty acid content in French fries of local food service retailers using attenuated total reflection–Fourier transform infrared spectroscopy. Food Chem. 125:1121–1125.
  • Helmy, R., Zhou, G. X., Chen, Y. W., Crocker, L., Wang, T., Wenslow, R. M., and Vailaya, A. (2003) Characterization and quantitation of aprepitant drug substance polymorphs by attenuated total reflectance Fourier transform infrared spectroscopy. Anal. Chem. 75:605–611.
  • Liotta, V., and Sabesan, V. (2004) Monitoring and feedback control of supersaturation using ATR-FTIR to produce an active pharmaceutical ingredient of a desired crystal size. Org. Process Res. Dev. 8:488–494.
  • Togkalidou, T., Tung, H.-H., Sun, Y., Andrews, A., and Braatz, R. D. (2002) Solution concentration prediction for pharmaceutical crystallization processes using robust chemometrics and ATR FTIR spectroscopy. Org. Process Res. Dev. 6:317–322.
  • Rinnan, Å., van den Berg, F., and Engelsen, S. B. (2009) Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 28:1201–1222.
  • Siesler, H.W., Ozaki, Y., Kawata, S., and Heise, H.M. (2002) Near-infrared spectroscopy principles instruments applications. Wiley-VCH, Weinheim, Germany.
  • Norris, K., Barnes, R., Moore, J., and Shenk, J. (1976) Predicting forage quality by infrared replectance spectroscopy. J. Anim. Sci. 43:889–897.
  • Luypaert, J., Massart, D. L., and Van der Heyden, Y. (2007) Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 72:865–883.
  • Awiti, A. O., Walsh, M. G., Shepherd, K. D., and Kinyamario, J. (2008) Soil condition classification using infrared spectroscopy: A proposition for assessment of soil condition along a tropical forest-cropland chronosequence. Geoderma. 143:73–84.
  • Sakudo, A., Suganuma, Y., Kobayashi, T., Onodera, T., and Ikuta, K. (2006) Near-infrared spectroscopy: Promising diagnostic tool for viral infections. Biochem. Bioph. Res. Co. 341:279–284.
  • Naik, S., Goud, V. V., Rout, P. K., and Dalai, A. K. (2010) Production of first and second generation biofuels: A comprehensive review. Renew. Sust. Energ. Rev. 14:578–597.
  • Murugesan, A., Umarani, C., Chinnusamy, T., Krishnan, M., Subramanian, R., and Neduzchezhain, N. (2009) Production and analysis of bio-diesel from non-edible oils—A review. Renew. Sust. Energ. Rev. 13:825–834.
  • De Bleye, C., Chavez, P. F., Mantanus, J., Marini, R., Hubert, P., Rozet, E., and Ziemons, E. (2012) Critical review of near-infrared spectroscopic methods validations in pharmaceutical applications. J. Pharm. Biomed. Anal. 69:125–132.
  • Reich, G. (2005) Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliver. Rev. 57:1109–1143.
  • Roggo, Y., Chalus, P., Maurer, L., Lema-Martinez, C., Edmond, A., and Jent, N. (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 44:683–700.
  • De Beer, T., Burggraeve, A., Fonteyne, M., Saerens, L., Remon, J. P., and Vervaet, C. (2011) Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int. J. Pharm. 417:32–47.
  • Ferrari, M., and Quaresima, V. (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63:921–935.
  • Huppert, T. J., Diamond, S. G., Franceschini, M. A., and Boas, D. A. (2009) HomER:a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Optics. 48:D280–D298.
  • Prieto, N., Roehe, R., Lavín, P., Batten, G., and Andrés, S. (2009) Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 83:175–186.
  • Landau, S., Glasser, T., and Dvash, L. (2006) Monitoring nutrition in small ruminants with the aid of near infrared reflectance spectroscopy (NIRS) technology: A review. Small Ruminant Res. 61:1–11.
  • Wang, F., Jiang, W., Li, C., Zhang, H., Nie, L., Li, L., Wang, P., and Zang, H. (2015) Application of near infrared spectroscopy in monitoring the moisture content in freeze-drying process of human coagulation factor VIII. J. Innovative Opt. Health Sci. 8: 1550034 (9 pages).
  • Dong, Q., Zang, H., Liu, A., Yang, G., Sun, C., Sui, L., Wang, P., and Li, L. (2010) Determination of molecular weight of hyaluronic acid by near-infrared spectroscopy. J. Pharm. Biomed. Anal. 53:274–278.
  • Cozzolino, D. (2009) Near infrared spectroscopy in natural products analysis. Planta Med. 75:746–756.
  • Zhang, C., and Su, J. (2014) Application of near infrared spectroscopy to the analysis and fast quality assessment of traditional Chinese medicinal products. Acta Pharm. Sin. B 4:182–192.
  • Wang, P., Zhang, H., Yang, H., Nie, L., and Zang, H. (2015) Rapid Determination of Major Bioactive Isoflavonoid Compounds During the Extraction Process of Kudzu (Pueraria lobata) by Near-Infrared Transmission Spectroscopy. Spectrochim. Acta A 137:1403–1408.
  • Wang, P., and Yu, Z. (2015) Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review. J. Pharm. Anal. 5:277–284.
  • Raman, C. V., and Krishnan, K. S. (1928) A new type of secondary radiation. Nature 121:501–502.
  • Dijkstra, R., Ariese, F., Gooijer, C., and Brinkman, U. T. (2005) Raman spectroscopy as a detection method for liquid-separation techniques. Trends Anal. Chem. 24:304–323.
  • Das, R. S., and Agrawal, Y. (2011) Raman spectroscopy:Recent advancements, techniques and applications. Vib. Spectrosc. 57:163–176.
  • Chalmers, J. M, and Griffiths, P. R (2007) Sampling techniques and fiber-optic probes. In Applications of vibrational spectroscopy in pharmaceutical research and development Pivonka, D.E., Chalmers, J.M., Griffiths, P.R., Eds., John Wiley & Sons, Chichester, pp. 19–49.
  • Hong, T. N., Jouan, M., Dao, N. Q., Bouraly, M., and Mantisi, F. (1996) Coupling of high-performance liquid chromatography with Raman spectrometry. J. Chromatogr. A 743:323–327.
  • Tian, Z., Li, W., Ren, B., Mao, B., Chen, J., Mu, J., Zhuo, X., and Wang, D. (1996) Simultaneous STM and Raman measurements on electrochemical interfaces. J. Electroanal. Chem. 401:247–251.
  • Cooper, S., Robson, M., Batchelder, D., and Bartle, K. (1997) Development of a universal Raman detector for microchromatography. Chromatographia 44:257–262.
  • Lopes, M., Candini, A., Urdampilleta, M., Reserbat-Plantey, A., Bellini, V., Klyatskaya, S., Marty, L., Ruben, M., Affronte, M., and Wernsdorfer, W. (2010) Surface-enhanced Raman signal for terbium single-molecule magnets grafted on graphene. ACS Nano. 4:7531–7537.
  • Bunaciu, A. A., Aboul-Enein, H. Y., and Hoang, V. D. (2015) Vibrational spectroscopy used in polymorphic analysis. Trends Anal. Chem. 69:14–22.
  • Blanco, M., and Villarroya, I. (2002) NIR spectroscopy: A rapid-response analytical tool. Trends Anal. Chem. 21:240–250.
  • Patz, C.-D., Blieke, A., Ristow, R., and Dietrich, H. (2004) Application of FT-MIR spectrometry in wine analysis. Anal. Chim. Acta. 513:81–89.
  • Vankeirsbilck, T., Vercauteren, A., Baeyens, W., Van der Weken, G., Verpoort, F., Vergote, G., and Remon, J. P. (2002) Applications of Raman spectroscopy in pharmaceutical analysis. Trends Anal. Chem. 21:869–877.
  • Miller, J. N., and Miller, J. C. (2005) Statistics and chemometrics for analytical chemistry. Pearson Education, Prentice Hall, New York.
  • Geladi, P. (2003) Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochim. Acta B 58:767–782.
  • Bosque-Sendra, J. M., Cuadros-Rodríguez, L., Ruiz-Samblás, C., and de la Mata, A. P. (2012) Combining chromatography and chemometrics for the characterization and authentication of fats and oils from triacylglycerol compositional data—A review. Anal. Chim. Acta. 724:1–11.
  • Boutros, P. C., and Okey, A. B. (2005) Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data. Brief. Bioinform. 6:331–343.
  • Smolinska, A., Blanchet, L., Buydens, L. M., and Wijmenga, S. S. (2012) NMR and pattern recognition methods in metabolomics:from data acquisition to biomarker discovery: A review. Anal. Chim. Acta. 750:82–97.
  • Berrueta, L. A., Alonso-Salces, R. M., and Héberger, K. (2007) Supervised pattern recognition in food analysis. J. Chromatogr. A 1158:196–214.
  • Pearson, K. (1901) Principal components analysis. London, Edinburgh, Dublin Phil. Mag. J. Sci. 6:559.
  • González, A. G. (2007) Use and misuse of supervised pattern recognition methods for interpreting compositional data. J. Chromatogr. A 1158:215–225.
  • Galtier, O., Le Dréau, Y., Ollivier, D., Kister, J., Artaud, J., and Dupuy, N. (2008) Lipid compositions and French registered designations of origins of virgin olive oils predicted by chemometric analysis of mid-infrared spectra. Appl. Spectrosc. 62:583–590.
  • Galtier, O., Dupuy, N., Le Dréau, Y., Ollivier, D., Pinatel, C., Kister, J., and Artaud, J. (2007) Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra. Anal. Chim. Acta. 595:136–144.
  • Maggio, R. M., Kaufman, T. S., Del Carlo, M., Cerretani, L., Bendini, A., Cichelli, A., and Compagnone, D. (2009) Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chem. 114:1549–1554.
  • Korifi, R., Le Dreau, Y., Molinet, J., Artaud, J., and Dupuy, N. (2011) Composition and authentication of virgin olive oil from French PDO regions by chemometric treatment of Raman spectra. J. Raman Spectrosc. 42:1540–1547.
  • Tefelski, D., Jastrzębski, C., Wierzbicki, M., Siegoczyński, R., Rostocki, A., Wieja, K., and Kościesza, R. (2010) Raman spectroscopy of triolein under high pressures. High Pressure Res. 30:124–129.
  • Morales, M. T., and Leon-Camacho, M. (2000) Gas and liquid chromatography: Methodology applied to olive oil. In Handbook of olive oil, Aparicio R., Harwood F., Eds. Springer, Berlin, pp. 159–207.
  • Aparicio, R., and Harwood, J. (2013) Handbook of olive oil. Springer, Berlin.
  • Baeten, V., Fernández Pierna, J. A., Dardenne, P., Meurens, M., García-González, D. L., and Aparicio-Ruiz, R. (2005) Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. J. Agric. Food Chem. 53:6201–6206.
  • Baeten, V., Dardenne, P., and Aparicio, R. (2001) Interpretation of Fourier transform Raman spectra of the unsaponifiable matter in a selection of edible oils. J. Agric. Food Chem. 49:5098–5107.
  • Paiva‐Martins, F., Rodrigues, V., Calheiros, R., and Marques, M. P. (2011) Characterization of antioxidant olive oil biophenols by spectroscopic methods. J. Sci. Food Agric. 91:309–314.
  • Duran, R. M. (1990) Relationship between composition and ripening of the olive and the quality of the oil. Acta Hortic. 286:441–451.
  • Jrah Harzallah, H., Kouidhi, B., Flamini, G., Bakhrouf, A., and Mahjoub, T. (2011) Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymoquinone. Food Chem. 129:1469–1474.
  • Le Dréau, Y., Dupuy, N., Artaud, J., Ollivier, D., and Kister, J. (2009) Infrared study of aging of edible oils by oxidative spectroscopic index and MCR-ALS chemometric method. Talanta 77:1748–1756.
  • Navarra, G., Cannas, M., D'Amico, M., Giacomazza, D., Militello, V., Vaccaro, L., and Leone, M. (2011) Thermal oxidative process in extra-virgin olive oils studied by FTIR, rheology and time-resolved luminescence. Food Chem. 126:1226–1231.
  • Pinto, R. C., Locquet, N., Eveleigh, L., and Rutledge, D. (2010) Preliminary studies on the mid-infrared analysis of edible oils by direct heating on an ATR diamond crystal. Food Chem. 120:1170–1177.
  • Wojcicki, K., Khmelinskii, I., Sikorski, M., and Sikorska, E. (2015) Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils. Food Chem. 187:416–423.
  • Guillén, M.a. D., and Cabo, N. (2002) Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chem. 77:503–510.
  • Allendorf, M., Subramanian, A., and Rodriguez-Saona, L. (2012) Application of a handheld portable mid-infrared sensor for monitoring oil oxidative stability. J. Am. Oil Chem. Soc. 89:79–88.
  • Guillén, M. D., and Cabo, N. (2000) Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. J. Sci. Food Agric. 80:2028–2036.
  • Lerma-García, M., Simó-Alfonso, E., Bendini, A., and Cerretani, L. (2011) Rapid evaluation of oxidised fatty acid concentration in virgin olive oil using Fourier-transform infrared spectroscopy and multiple linear regression. Food Chem. 124:679–684.
  • Russin, T. A., van de Voort, F. R., and Sedman, J. (2004) Rapid determination of oxidative stability of edible oils by FTIR spectroscopy using disposable IR cards. J. Am. Oil. Chem. Soc. 81:111–116.
  • Russin, T. A., van de Voort, F. R., and Sedman, J. (2003) Novel method for rapid monitoring of lipid oxidation by FTIR spectroscopy using disposable IR cards. J. Am. Oil Chem. Soc. 80:635–641.
  • Rovellini, P., and Cortesi, N. (2004) Oxidative status of extra virgin olive oils: HPLC evaluation. Ital. J. Food Sci. 16:333–342.
  • Mahesar, S. A., Bendini, A., Cerretani, L., Bonoli‐Carbognin, M., and Sherazi, S. T. H. (2010) Application of a spectroscopic method to estimate the olive oil oxidative status. Eur. J. Lipid Sci. Tech. 112:1356–1362.
  • Muik, B., Lendl, B., Molina-Díaz, A., and Ayora-Cañada, M. J. (2005) Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem. Phys. Lipids 134:173–182.
  • Muik, B., Lendl, B., Molina-Diaz, A., Valcarcel, M., and Ayora-Cañada, M. J. (2007) Two-dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy. Anal. Chim. Acta. 593:54–67.
  • Gallina‐Toschi, T., Cerretani, L., Bendini, A., Bonoli‐Carbognin, M., and Lercker, G. (2005) Oxidative stability and phenolic content of virgin olive oil:an analytical approach by traditional and high resolution techniques. J. Sep. Sci. 28:859–870.
  • Frankel, E. N. (2010) Chemistry of extra virgin olive oil:adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 58:5991–6006.
  • Conte, L., Brussolo, G., Pizzale, L., Carazzolo, A., Meurens, M., and Pavan, O. (2003) Application of near infrared reflectance analysis to olive oil production quality control. Riv. Ital. Sostanze Gr. 80:213–217.
  • Mailer, R. J. (2004) Rapid evaluation of olive oil quality by NIR reflectance spectroscopy. J. Am. Oil Chem. Soc. 81:823–827.
  • Armenta, S., Garrigues, S., and De la Guardia, M. (2007) Determination of edible oil parameters by near infrared spectrometry. Anal. Chim. Acta. 596:330–337.
  • Cayuela Sánchez, J. A., Moreda, W., and García, J. M. (2013) Rapid determination of olive oil oxidative stability and its major quality parameters using Vis/NIR transmittance spectroscopy. J. Agric. Food Chem. 61:8056–8062.
  • Gonzaga, F. B., and Pasquini, C. (2006) A new method for determination of the oxidative stability of edible oils at frying temperatures using near infrared emission spectroscopy. Anal. Chim. Acta. 570:129–135.
  • Gonzaga, F. B., Pasquini, C., Rodrigues, C. E., and Meirelles, A. J. (2007) Comparison of near‐infrared emission spectroscopy and the Rancimat method for the determination of oxidative stability. Eur. J. Lipid Sci. Technol. 109:61–65.
  • Maggio, R. M., Valli, E., Bendini, A., Gómez-Caravaca, A. M., Toschi, T. G., and Cerretani, L. (2011) A spectroscopic and chemometric study of virgin olive oils subjected to thermal stress. Food Chem. 127:216–221.
  • Mannina, L., and Sobolev, A. P. (2011) High resolution NMR characterization of olive oils in terms of quality, authenticity and geographical origin. Magn. Reson. Chem. 49:S3–S11.
  • Kalua, C. M., Bedgood, D. R., Bishop, A. G., and Prenzler, P. D. (2006) Discrimination of storage conditions and freshness in virgin olive oil. J. Agric. Food Chem. 54:7144–7151.
  • Sinelli, N., Cosio, M. S., Gigliotti, C., and Casiraghi, E. (2007) Preliminary study on application of mid infrared spectroscopy for the evaluation of the virgin olive oil “freshness”. Anal. Chim. Acta. 598:128–134.
  • Gómez-Rico, A., Salvador, M. D., Moriana, A., Pérez, D., Olmedilla, N., Ribas, F., and Fregapane, G. (2007) Influence of different irrigation strategies in a traditional Cornicabra cv. olive orchard on virgin olive oil composition and quality. Food Chem. 100:568–578.
  • Hajimahmoodi, M., Vander Heyden, Y., Sadeghi, N., Jannat, B., Oveisi, M., and Shahbazian, S. (2005) Gas-chromatographic fatty-acid fingerprints and partial least squares modeling as a basis for the simultaneous determination of edible oil mixtures. Talanta 66:1108–1116.
  • Sakouhi, F., Absalon, C., Sebei, K., Fouquet, E., Boukhchina, S., and Kallel, H. (2009) Gas chromatographic–mass spectrometric characterisation of triterpene alcohols and monomethylsterols in developing Olea europaea L. fruits. Food Chem. 116:345–350.
  • Nergiz, C., and Ergönül, P. G. (2009) Organic acid content and composition of the olive fruits during ripening and its relationship with oil and sugar. Sci. Hortic. 122:216–220.
  • Bonoli, M., Bendini, A., Cerretani, L., Lercker, G., and Gallina Toschi, T. (2004) Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J. Agric. Food Chem. 52:7026–7032.
  • López-Sánchez, M., Ayora-Cañada, M. a. J., and Molina-Díaz, A. (2009) Olive fruit growth and ripening as seen by vibrational spectroscopy. J. Agric. Food Chem. 58:82–87.
  • Gallardo, L., Osorio, E., and Sanchez, J. (2005) Application of near infrared spectroscopy (NIRS) for the real-time determination of moisture and fat contents in olive pastes and wastes of oil extraction. Alimentación Equipos y Tecnologia. 24:85–89.
  • Garcia, J. M., Seller, S., and Perez-Camino, M. C. (1996) Influence of fruit ripening on olive oil quality. J. Agric. Food Chem. 44:3516–3520.
  • León, L., Garrido-Varo, A., and Downey, G. (2004) Parent and harvest year effects on near-infrared reflectance spectroscopic analysis of olive (Olea europaea L.) fruit traits. J. Agric. Food Chem. 52:4957–4962.
  • Cayuela, J. A., and Camino, M.d.C. P. (2010) Prediction of quality of intact olives by near infrared spectroscopy. Eur. J. Lipid Sci. Technol. 112:1209–1217.
  • Barros, A. S., Nunes, A., Martins, J., and Delgadillo, I. (2009) Determination of oil and water in olive and olive pomace by NIR and multivariate analysis, Sens. Instrum. Food Qual. Saf. 3:180–186.
  • Bendini, A., Cerretani, L., Di Virgilio, F., Belloni, P., Lercker, G., and Toschi, T. G. (2007) In‐process monitoring in industrial olive mill by means of FT‐NIR. Eur. J. Lipid Sci. Technol. 109:498–504.
  • Cayuela, J. A., García, J. M., and Caliani, N. (2009) NIR prediction of fruit moisture, free acidity and oil content in intact olives. Grasas y Aceites. 60:194–202.
  • Salguero-Chaparro, L., Baeten, V., Fernández-Pierna, J. A., and Peña-Rodríguez, F. (2013) Near infrared spectroscopy (NIRS) for on-line determination of quality parameters in intact olives. Food Chem. 139:1121–1126.
  • Gracia, A., and León, L. (2011) Non-destructive assessment of olive fruit ripening by portable near infrared spectroscopy. Grasas Aceites. 62:268–274.
  • Bellincontro, A., Taticchi, A., Servili, M., Esposto, S., Farinelli, D., and Mencarelli, F. (2012) Feasible application of a portable NIR-AOTF tool for on-field prediction of phenolic compounds during the ripening of olives for oil production. J. Agric. Food Chem. 60:2665–2673.
  • Lercker, G., Frega, N., Bocci, F., and Servidio, G. (1994) “Veiled” extra-virgin olive oils: Dispersion response related to oil quality. J. Am. Oil Chem. Soc. 71:657–658.
  • Frega, N., Mozzon, M., and Lercker, G. (1999) Effects of free fatty acids on oxidative stability of vegetable oil. J. Am. Oil Chem. Soc. 76:325–329.
  • Hatzakis, E., and Dais, P. (2008) Determination of water content in olive oil by 31P NMR spectroscopy. J. Agric. Food Chem. 56:1866–1872.
  • Ambrosone, L., Angelico, R., Cinelli, G., Di Lorenzo, V., and Ceglie, A. (2002) The role of water in the oxidation process of extra virgin olive oils. J. Am. Oil Chem. Soc. 79:577–582.
  • Tsimidou, M. Z., Georgiou, A., Koidis, A., and Boskou, D. (2005) Loss of stability of “veiled”(cloudy) virgin olive oils in storage. Food Chem. 93:377–383.
  • Fregapane, G., Lavelli, V., León, S., Kapuralin, J., and Desamparados Salvador, M. (2006) Effect of filtration on virgin olive oil stability during storage. Eur. J. Lipid Sci. Technol. 108:134–142.
  • AOAC. (1998) AOAC Official Method 984.20. Moisture in oils and fats. Karl Fischer method. In Official methods of analysis of AOAC International 16th ed. AOAC, Gaithersburg, MD, pp. 41–42.
  • Todt, H., Guthausen, G., Burk, W., Schmalbein, D., and Kamlowski, A. (2006) Water/moisture and fat analysis by time-domain NMR. Food Chem. 96:436–440.
  • Büning-Pfaue, H. (2003) Analysis of water in food by near infrared spectroscopy. Food Chem. 82:107–115.
  • Cozzolino, D., Murray, a. I., Chree, A., and Scaife, J. (2005) Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy. LWT-Food Sci. Technol. 38:821–828.
  • Aparicio, R., and Aparicio-Ruíz, R. (2000) Authentication of vegetable oils by chromatographic techniques. J. Chromatogr. A. 881:93–104.
  • Ruiz del Castillo, M. L., Caja, M. d. M., Herraiz, M., and Blanch, G. P. (1998) Rapid recognition of olive oil adulterated with hazelnut oil by direct analysis of the enantiomeric composition of filbertone. J. Agric. Food Chem. 46:5128–5131.
  • Blanch, G. P., Caja, M.d.M., Ruiz del Castillo, M. L., and Herraiz, M. (1998) Comparison of different methods for the evaluation of the authenticity of olive oil and hazelnut oil. J. Agric. Food Chem. 46:3153–3157.
  • Pfnuer, P., Matsui, T., Grosch, W., Guth, H., Hofmann, T., and Schieberle, P. (1999) Development of a stable isotope dilution assay for the quantification of 5-methyl-(E)-2-hepten-4-one:Application to hazelnut oils and hazelnuts. J. Agric. Food Chem. 47:2044–2047.
  • Blanch, G. P., and Jauch, J. (1998) Enantiomeric composition of filbertone in hazelnuts in relation to extraction conditions. Multidimensional gas chromatography and gas chromatography/mass spectrometry in the single ion monitoring mode of a natural sample. J. Agric. Food Chem. 46:4283–4286.
  • Blanch, G. P., Caja, M., León, M., and Herraiz, M. (2000) Determination of (E)‐5‐methylhept‐2‐en‐4‐one in deodorised hazelnut oil. Application to the detection of adulterated olive oils. J. Sci. Food Agric. 80:140–144.
  • Flores, G., Del Castillo, M. L. R., Blanch, G. P., and Herraiz, M. (2006) Detection of the adulteration of olive oils by solid phase microextraction and multidimensional gas chromatography. Food Chem. 97:336–342.
  • Flores, G., del Castillo, M. L. R., Herraiz, M., and Blanch, G. P. (2006) Study of the adulteration of olive oil with hazelnut oil by on-line coupled high performance liquid chromatographic and gas chromatographic analysis of filbertone. Food Chem. 97:742–749.
  • Bowadt, S., and Aparicio, R. (2003) The detection of the adulteration of olive oil with hazelnut oil: A challenge for the chemist. Inform. 14:342–344.
  • Gurdeniz, G., Tokatli, F., and Ozen, B. (2007) Differentiation of mixtures of monovarietal olive oils by mid‐infrared spectroscopy and chemometrics. Eur. J. Lipid Sci. Technol. 109:1194–1202.
  • de la Mata, P., Dominguez-Vidal, A., Bosque-Sendra, J. M., Ruiz-Medina, A., Cuadros-Rodríguez, L., and Ayora-Cañada, M. J. (2012) Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics. Food Control. 23:449–455.
  • Obeidat, S. M., Khanfar, M. S., and Obeidat, W. M. (2009) Classification of edible oils and uncovering adulteration of virgin olive oil using FTIR with the aid of chemometrics. Aust. J. Basic Appl. Sci. 3:2048–2053.
  • Lerma-García, M., Ramis-Ramos, G., Herrero-Martínez, J., and Simó-Alfonso, E. (2010) Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 118:78–83.
  • Rohman, A., and Man, Y. C. (2010) Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 43:886–892.
  • Oussama, A., Elabadi, F., Platikanov, S., Kzaiber, F., and Tauler, R. (2012) Detection of olive oil adulteration using FT-IR spectroscopy and PLS with variable importance of projection (VIP) scores. J. Am. Oil Chem. Soc. 89:1807–1812.
  • Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A., and Tegou, E. (2006) Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta. 573:459–465.
  • Poiana, M.-A., Alexa, E., Munteanu, M.-F., Gligor, R., Moigradean, D., and Mateescu, C. (2015) Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment. Open Chem. 13:689–698.
  • Ozen, B. F., and Mauer, L. J. (2002) Detection of hazelnut oil adulteration using FT-IR spectroscopy. J. Agric. Food Chem. 50:3898–3901.
  • Ozen, B. F., Weiss, I., and Mauer, L. J. (2003) Dietary supplement oil classification and detection of adulteration using Fourier transform infrared spectroscopy. J. Agric. Food Chem. 51:5871–5876.
  • Christy, A. A., Kasemsumran, S., Du, Y., and Ozaki, Y. (2004) The detection and quantification of adulteration in olive oil by near-infrared spectroscopy and chemometrics. Anal. Sci. 20:935–940.
  • Wesley, I., Barnes, R., and McGill, A. (1995) Measurement of adulteration of olive oils by near-infrared spectroscopy. J. Am. Oil Chem. Soc. 72:289–292.
  • Öztürk, B., Yalçin, A., and Özdemir, D. (2010) Determination of olive oil adulteration with vegetable oils by near infrared spectroscopy coupled with multivariate calibration. J. Near Infrared Spectrosc. 18:191–201.
  • Downey, G., McIntyre, P., and Davies, A. N. (2002) Detecting and quantifying sunflower oil adulteration in extra virgin olive oils from the Eastern Mediterranean by visible and near-infrared spectroscopy. J. Agric. Food Chem. 50:5520–5525.
  • Ozdemir, D., and Ozturk, B. (2007) Near infrared spectroscopic determination of olive oil adulteration with sunflower and corn oil. J. Food Drug Anal. 15:40.
  • Kasemsumran, S., Kang, N., Christy, A., and Ozaki, Y. (2005) Partial least squares processing of near‐infrared spectra for discrimination and quantification of adulterated olive oils. Spectrosc. Lett. 38:839–851.
  • Mignani, A. G., Ciaccheri, L., Ottevaere, H., Thienpont, H., Conte, L., Marega, M., Cichelli, A., Attilio, C., and Cimato, A. (2011) Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany. Anal. Bioanal. Chem. 399:1315–1324.
  • Zhuang, X.-L., Xiang, Y.-H., Qiang, H., Zhang, Z.-Y., and Zhang, X.-Y. (2010) Quality analysis of olive oil and quantification detection of adulteration in olive oil by near-infrared spectrometry and chemometrics. Spectrosc. Spect. Anal. 30:933–936.
  • Azizian, H., Mossoba, M. M., Fardin-Kia, A. R., Delmonte, P., Karunathilaka, S. R., and Kramer, J. K. (2015) Novel, rapid identification, and quantification of adulterants in extra virgin olive oil using near-infrared spectroscopy and chemometrics. Lipids 50:705–718.
  • Baeten, V., Hourant, P., Morales, M. T., and Aparicio, R. (1998) Oil and fat classification by FT-Raman spectroscopy. J. Agric. Food Chem. 46:2638–2646.
  • Baeten, V., Dardenne, P., and Aparicio, R. (2001) Interpretation of Fourier transform Raman spectra of the unsaponifiable matter in a selection of edible oils. J. Agric. Food Chem. 49:5098–5107.
  • Baeten, V., Meurens, M., Morales, M., and Aparicio, R. (1996) Detection of virgin olive oil adulteration by Fourier transform Raman spectroscopy. J. Agric. Food Chem. 44:2225–2230.
  • Baeten, V., Fernández Pierna, J. A., Dardenne, P., Meurens, M., García-González, D. L., and Aparicio-Ruiz, R. (2005) Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. J. Agric. Food Chem. 53:6201–6206.
  • López-Díez, E. C., Bianchi, G., and Goodacre, R. (2003) Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics. J. Agric. Food Chem. 51:6145–6150.
  • Dong, W., Zhang, Y., Zhang, B., and Wang, X. (2012) Quantitative analysis of adulteration of extra virgin olive oil using Raman spectroscopy improved by Bayesian framework least squares support vector machines. Anal. Methods 4:2772–2777.
  • Zhang, X., Qi, X., Zou, M., and Liu, F. (2011) Rapid authentication of olive oil by Raman spectroscopy using principal component analysis. Anal. Lett. 44:2209–2220.
  • El‐Abassy, R., Donfack, P., and Materny, A. (2009) Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration. J. Raman Spectrosc. 40:1284–1289.
  • Zhang, X. F., Zou, M. Q., Qi, X. H., Liu, F., Zhang, C., and Yin, F. (2011) Quantitative detection of adulterated olive oil by Raman spectroscopy and chemometrics. J. Raman Spectrosc. 42:1784–1788.
  • Muik, B., Lendl, B., Molina-Dí, A., and Ayora-Cañada, J. (2003) Direct, reagent-free determination of free fatty acid content in olive oil and olives by Fourier transform Raman spectrometry. Anal. Chim. Acta 487:211–220.
  • Baeten, V., and Novi, M. (2008) The use of FT-MIR spectroscopy and counter-propagation artificial neural networks for tracing the adulteration of olive oil. Acta Chim. Slov. 55:935–941.
  • Tay, A., Singh, R., Krishnan, S., and Gore, J. (2002) Authentication of olive oil adulterated with vegetable oils using Fourier transform infrared spectroscopy. LWT-Food Sci. Technol. 35:99–103.
  • Gurdeniz, G., and Ozen, B. (2009) Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chem. 116:519–525.
  • Zou, M.-Q., Zhang, X.-F., Qi, X.-H., Ma, H.-L., Dong, Y., Liu, C.-W., Guo, X., and Wang, H. (2009) Rapid authentication of olive oil adulteration by Raman spectrometry. J. Agric. Food Chem. 57:6001–6006.
  • Rohman, A., and Che Man, Y. (2012) Authentication of extra virgin olive oil from sesame oil using FTIR spectroscopy and gas chromatography. Int. J. Food Prop. 15:1309–1318.
  • Maggio, R. M., Cerretani, L., Chiavaro, E., Kaufman, T. S., and Bendini, A. (2010) A novel chemometric strategy for the estimation of extra virgin olive oil adulteration with edible oils. Food Con. 21:890–895.
  • Rohman, A., Man, Y. C., and Yusof, F. M. (2014) The use of FTIR spectroscopy and chemometrics for rapid authentication of extra virgin olive oil. J. Am. Oil Chem. Soc. 91:207–213.
  • Tapp, H. S., Defernez, M., and Kemsley, E. K. (2003) FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils. J. Agric. Food Chem. 51:6110–6115.
  • Mignani, A., Ciaccheri, L., Cimato, A., Attilio, C., and Smith, P. (2005) Spectral nephelometry for the geographic classification of Italian extra virgin olive oils. Sens. Actuators B Chem. 111:363–369.
  • Sinelli, N., Casale, M., Di Egidio, V., Oliveri, P., Bassi, D., Tura, D., and Casiraghi, E. (2010) Varietal discrimination of extra virgin olive oils by near and mid infrared spectroscopy. Food Res. Int. 43:2126–2131.
  • de, B., Harrington, P., Kister, J., Artaud, J., and Dupuy, N. (2009) Automated principal component-based orthogonal signal correction applied to fused near infrared− mid-infrared spectra of French olive oils. Anal. Chem. 81:7160–7169.
  • Casale, M., Casolino, C., Ferrari, G., and Forina, M. (2008) Near infrared spectroscopy and class modelling techniques for the geographical authentication of Ligurian extra virgin olive oil. J. Near Infrared Spectrosc. 16:39.
  • Bendini, A., Cerretani, L., Di Virgilio, F., Belloni, P., Bondi‐Carbognin, M., and Lercker, G. (2007) Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality of virgin olive oils. J. Food Qual. 30:424–437.
  • Bertran, E., Blanco, M., Coello, J., Iturriaga, H., Maspoch, S., and Montoliu, I. (2000) Near infrared spectrometry and pattern recognition as screening methods for the authentication of virgin olive oils of very close geographical origins. J. Near Infrared Spectrosc. 8:45–52.
  • Gurdeniz, G., Ozen, B., and Tokatli, F. (2008) Classification of Turkish olive oils with respect to cultivar, geographic origin and harvest year, using fatty acid profile and mid-IR spectroscopy. Eur. Food Res. Technol. 227:1275–1281.
  • Galtier, O., Dupuy, N., Le Dréau, Y., Ollivier, D., Pinatel, C., Kister, J., and Artaud, J. (2007) Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR spectra, Anal. Chim. Acta. 595:136–144.
  • Sinelli, N., Casiraghi, E., Tura, D., and Downey, G. (2008) Characterisation and classification of Italian virgin olive oils by near-and mid-infrared spectroscopy. J. Near Infrared Spectrosc. 16:335–342.
  • Carmona, M. Á., Lafont, F., Jiménez‐Sanchidrián, C., and Ruiz, J. R. (2014) Raman spectroscopy study of edible oils and determination of the oxidative stability at frying temperatures. Eur. J. Lipid Sci. Technol. 116:1451–1456.
  • Woodcock, T., Downey, G., and O'Donnell, C. P. (2008) Confirmation of declared provenance of European extra virgin olive oil samples by NIR spectroscopy. J. Agric. Food Chem. 56:11520–11525.
  • Koprivnjak, O., Procida, G., and Zelinotti, T. (2000) Changes in the volatile components of virgin olive oil during fruit storage in aqueous media. Food Chem. 70:377–384.
  • Bevilacqua, M., Bucci, R., Magrì, A. D., Magrì, A. L., and Marini, F. (2012) Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics:A case study. Anal. Chim. Acta. 717:39–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.